Adaptive Patch Searching Strategies in Fragmented Landscapes

The search strategies dispersers employ to search for new habitat patches affect individuals’ search success and subsequently landscape connectivity and metapopulation viability. Some evidence indicates that individuals within the same species may display a variety of behavioural patch searching strategies rather than one species-specific strategy. This may result from landscape heterogeneity. We modelled the evolution of individual patch searching strategies in different landscapes. Specifically, we analysed whether evolution can favour different, co-existing, behavioural search strategies within one population and to what extent this coexistence of multiple strategies was dependent on landscape configuration. Using an individual-based simulation model, we studied the evolution of patch searching strategies in three different landscape configurations: uniform, random and clumped. We found that landscape configuration strongly influenced the evolved search strategy. In uniform landscapes, one fixed search strategy evolved for the entire spatially structured population, while in random and clumped landscapes, a set of different search strategies emerged. The coexistence of several search strategies also strongly depended on the dispersal mortality. We show that our result can affect landscape connectivity and metapopulation dynamics.

[1]  D. Roff,et al.  Wing Dimorphisms and the Evolution of Migratory Polymorphisms among the Insecta , 1991 .

[2]  D. Tautz Evolutionary biology: Splitting in space , 2003, Nature.

[3]  D. Roff The evolution of flightlessness in insects , 1990 .

[4]  N. Yoccoz,et al.  Studying Transfer Processes in Metapopulations: Emigration, Migration, and Colonization , 1997 .

[5]  Christian Wissel,et al.  Dispersal behaviour in fragmented landscapes: Deriving a practical formula for patch accessibility , 2004, Landscape Ecology.

[6]  T. J. Roper,et al.  Non-random dispersal in the butterfly Maniola jurtina: implications for metapopulation models , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[7]  Bernd Gruber,et al.  Linking habitat structure and orientation in an arboreal species Gehyra variegata (Gekkonidae) , 2004 .

[8]  Karin Frank,et al.  The Viability of Metapopulations: Individual Dispersal Behaviour Matters , 2005, Landscape Ecology.

[9]  Patrick A. Zollner,et al.  Foray Search: An Effective Systematic Dispersal Strategy in Fragmented Landscapes , 2003, The American Naturalist.

[10]  R. Wehner,et al.  The hidden spiral: systematic search and path integration in desert ants, Cataglyphis fortis , 1994, Journal of Comparative Physiology A.

[11]  J. Haefner,et al.  Spatial Model of Movement and Foraging in Harvester Ants (Pogonomyrmex) (I): The Roles of Memory and Communication , 1994 .

[12]  G. Pyke Optimal foraging in hummingbirds: Rule of movement between inflorescences , 1981, Animal Behaviour.

[13]  S. L. Lima,et al.  SEARCH STRATEGIES FOR LANDSCAPE‐LEVEL INTERPATCH MOVEMENTS , 1999 .

[14]  S. L. Lima,et al.  Behavioral tradeoffs when dispersing across a patchy landscape , 2005 .

[15]  G. Hess Linking Extinction to Connectivity and Habitat Destruction in Metapopulation Models , 1996, The American Naturalist.

[16]  A. J. Noordwijk,et al.  Gene flow maintains a large genetic difference in clutch size at a small spatial scale , 2005, Nature.

[17]  D. Roff THE EVOLUTION OF WING DIMORPHISM IN INSECTS , 1986, Evolution; international journal of organic evolution.

[18]  Simon A. Levin,et al.  Dispersal in patchy environments: The effects of temporal and spatial structure , 1991 .

[19]  Nathan H. Schumaker,et al.  Using Landscape Indices to Predict Habitat Connectivity , 1996 .

[20]  L. Kruuk,et al.  Evolution driven by differential dispersal within a wild bird population , 2005, Nature.

[21]  D. B. Dusenbery Sensory Ecology: How Organisms Acquire and Respond to Information , 1992 .

[22]  Jianguo Liu,et al.  Population Dynamics in Complex Landscapes: A Case Study. , 1992, Ecological applications : a publication of the Ecological Society of America.

[23]  Magnus Wiktorsson,et al.  Modelling the movement of a soil insect. , 2004, Journal of theoretical biology.

[24]  Karin Johst,et al.  Metapopulation persistence in dynamic landscapes: the role of dispersal distance , 2002 .

[25]  É. Kisdi,et al.  DIVERGENT EVOLUTION OF DISPERSAL IN A HETEROGENEOUS LANDSCAPE , 2001, Evolution; international journal of organic evolution.

[26]  E. Batschelet Circular statistics in biology , 1981 .

[27]  G. W. Schuett,et al.  Straight-line movement and competitive mate searching in prairie rattlesnakes, Crotalus viridis viridis , 1997, Animal Behaviour.

[28]  REBECCA S. YEOMANS,et al.  Water-finding in adult turtles: random search or oriented behaviour? , 1995, Animal Behaviour.

[29]  Robert Lee Schooley,et al.  Patchy Landscapes and Animal Movements: Do Beetles Percolate? , 1997 .

[30]  M. Hassall,et al.  Foraging behaviour of Armadillidium vulgare (Isopoda: Oniscidea) in heterogeneous environments , 2004 .

[31]  Geir Huse,et al.  Implementing behaviour in individual-based models using neural networks and genetic algorithms , 1999, Evolutionary Ecology.

[32]  L. Tischendorf Can landscape indices predict ecological processes consistently? , 2001, Landscape Ecology.

[33]  Michael L. Cain,et al.  Random Search by Herbivorous Insects: A Simulation Model , 1985 .

[34]  John E. Gross,et al.  Movement rules for herbivores in spatially heterogeneous environments: responses to small scale pattern , 1995, Landscape Ecology.

[35]  Fyodor A. Kondrashov,et al.  Interactions among quantitative traits in the course of sympatric speciation , 1999, Nature.

[36]  Gerhard Hoffmann,et al.  The search behavior of the desert isopod Hemilepistus reaumuri as compared with a systematic search , 1983, Behavioral Ecology and Sociobiology.

[37]  R. Denno,et al.  Density-Related Migration in Planthoppers (Homoptera: Delphacidae): The Role of Habitat Persistence , 1991, The American Naturalist.

[38]  R. Harrison Dispersal Polymorphisms in Insects , 1980 .

[39]  Bruce T. Milne,et al.  Detecting Critical Scales in Fragmented Landscapes , 1997 .

[40]  Karin Frank,et al.  Spatial aspects of metapopulation survival – from model results to rules of thumb for landscape management , 1998, Landscape Ecology.

[41]  Y. Iwasa,et al.  Prey Distribution as a Factor Determining the Choice of Optimal Foraging Strategy , 1981, The American Naturalist.

[42]  Michael Doebeli,et al.  EVOLUTION OF DISPERSAL RATES IN METAPOPULATION MODELS: BRANCHING AND CYCLIC DYNAMICS IN PHENOTYPE SPACE , 1997, Evolution; international journal of organic evolution.

[43]  O. Leimar,et al.  The evolution of movements and behaviour at boundaries in different landscapes: a common arena experiment with butterflies , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[44]  Colette Rivault,et al.  Path integration in cockroach larvae,Blattella germanica (L.) (insect: Dictyoptera): Direction and distance estimation , 1999 .

[45]  Magnus Wiktorsson,et al.  Irregular walks and loops combines in small-scale movement of a soil insect: implications for dispersal biology. , 2004, Journal of theoretical biology.

[46]  R. A. Mintzer,et al.  Experimental simulation in behavioral ecology: a multimedia approach with the spatial searching simulation RattleSnake© , 1997 .

[47]  Andrew E. Derocher,et al.  Space-use strategies of female polar bears in a dynamic sea ice habitat , 2001 .

[48]  C. Thomas Dispersal and extinction in fragmented landscapes , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[49]  John A. Wiens,et al.  Animal movement in heterogeneous landscapes : an experiment with Eleodes beetles in shortgrass prairie , 1992 .

[50]  M. McPeek,et al.  The Evolution of Dispersal in Spatially and Temporally Varying Environments , 1992, The American Naturalist.

[51]  Melanie Mitchell,et al.  Genetic algorithms and artificial life , 1994 .

[52]  Deborah Austin,et al.  Intraspecific variation in movement patterns: modeling individual behaviour in a large marine predator , 2004 .

[53]  R. Denno,et al.  BENEFITS OF DISPERSAL IN PATCHY ENVIRONMENTS: MATE LOCATION BY MALES OF A WING‐DIMORPHIC INSECT , 2001 .

[54]  L. Conradt,et al.  Dispersal behaviour of individuals in metapopulations of two British butterflies , 2001 .

[55]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[56]  B. J. Goodwin,et al.  Effect of landscape structure on the movement behaviour of a specialized goldenrod beetle, Trirhabda borealis , 2002 .

[57]  Patrick A. Zollner,et al.  Comparing the landscape level perceptual abilities of forest sciurids in fragmented agricultural landscapes* , 2000, Landscape Ecology.

[58]  J. Thomas Social Life and the Single Nucleotide Foraging Behavior in C. elegans , 1998, Cell.

[59]  S. L. Lima,et al.  Landscape-level perceptual abilities in white-footed mice : perceptual range and the detection of forested habitat , 1997 .

[60]  Brent J. Danielson,et al.  The effects of landscape composition and physiognomy on metapopulation size: the role of corridors , 1997, Landscape Ecology.

[61]  Ulf Dieckmann,et al.  Speciation along environmental gradients , 2003, Nature.

[62]  W. J. Bell Sources of information controlling motor patterns in arthropod local search orientation , 1985 .

[63]  Geir Huse,et al.  Artificial Evolution of Life History and Behavior , 2002, The American Naturalist.

[64]  Frederick R. Adler,et al.  Persistence in patchy irregular landscapes , 1994 .

[65]  Ilkka Hanski,et al.  Metapopulation structure and migration in the butterfly Melitaea cinxia , 1994 .

[66]  Cori Bargmann,et al.  Natural Variation in a Neuropeptide Y Receptor Homolog Modifies Social Behavior and Food Response in C. elegans , 1998, Cell.

[67]  Eric J. Gustafson,et al.  The Effect of Landscape Heterogeneity on the Probability of Patch Colonization , 1996 .

[68]  J. P. Ball,et al.  Partial migration by large ungulates: characteristics of seasonal moose Alces alces ranges in northern Sweden , 2001, Wildlife Biology.

[69]  J. Wiens,et al.  Interactions between landscape structure and animal behavior: the roles of heterogeneously distributed resources and food deprivation on movement patterns , 1999, Landscape Ecology.

[70]  Gerhard Hoffmann,et al.  The influence of landmarks on the systematic search behaviour of the desert isopod Hemilepistus reaumuri , 1985, Behavioral Ecology and Sociobiology.

[71]  U. Dieckmann,et al.  On the origin of species by sympatric speciation , 1999, Nature.