Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors

[1]  William Bourguet,et al.  A canonical structure for the ligand-binding domain of nuclear receptors , 1996, Nature Structural Biology.

[2]  V. Poli,et al.  The Transcription Factor CCAAT/Enhancer-binding Protein β Regulates Gluconeogenesis and Phosphoenolpyruvate Carboxykinase (GTP) Gene Transcription during Diabetes* , 1999, The Journal of Biological Chemistry.

[3]  B. O’Malley,et al.  Identification of a new brain-specific transcription factor, NURR1. , 1992, Molecular endocrinology.

[4]  Hong Jiang,et al.  Mutations in NR4A2 associated with familial Parkinson disease , 2003, Nature Genetics.

[5]  P. Cohen,et al.  Phosphorylation of the Transcription Factor Forkhead Family Member FKHR by Protein Kinase B* , 1999, The Journal of Biological Chemistry.

[6]  Guillaume Adelmant,et al.  Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1 , 2001, Nature.

[7]  D. Moras,et al.  Structural and functional evidence for ligand-independent transcriptional activation by the estrogen-related receptor 3. , 2002, Molecules and Cells.

[8]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[9]  H. Gronemeyer,et al.  The nuclear receptor ligand-binding domain: structure and function. , 1998, Current opinion in cell biology.

[10]  T. Willson,et al.  Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ , 1998, Nature.

[11]  D. Moore,et al.  Dynamic stabilization of nuclear receptor ligand binding domains by hormone or corepressor binding. , 2000, Molecular cell.

[12]  Guillaume Adelmant,et al.  Activation of PPARγ coactivator-1 through transcription factor docking , 1999 .

[13]  B J Hoffer,et al.  Dopamine neuron agenesis in Nurr1-deficient mice. , 1997, Science.

[14]  J. Lehmann,et al.  Orphan nuclear receptors: shifting endocrinology into reverse. , 1999, Science.

[15]  T. Perlmann,et al.  Activity of the Nurr1 Carboxyl-terminal Domain Depends on Cell Type and Integrity of the Activation Function 2* , 1999, The Journal of Biological Chemistry.

[16]  Timothy M Willson,et al.  Hepatocyte nuclear factor 4 is a transcription factor that constitutively binds fatty acids. , 2002, Structure.

[17]  R. Unger,et al.  Glucagon physiology and pathophysiology in the light of new advances , 1985, Diabetologia.

[18]  Thomas C. Terwilliger,et al.  Automated MAD and MIR structure solution , 1999, Acta crystallographica. Section D, Biological crystallography.

[19]  V. N. Molchanov,et al.  Superconducting Single Crystals of Tl2Ba2CaCu2O8 and YBa2Cu4O8: Crystal Structures in the Vicinity of Tc , 1998 .

[20]  T. Perlmann,et al.  Defining Requirements for Heterodimerization between the Retinoid X Receptor and the Orphan Nuclear Receptor Nurr1* , 2002, The Journal of Biological Chemistry.

[21]  R. Evans,et al.  Nuclear receptors and lipid physiology: opening the X-files. , 2001, Science.

[22]  S. Shoelson,et al.  Crystal Structure of the HNF4α Ligand Binding Domain in Complex with Endogenous Fatty Acid Ligand* , 2002, The Journal of Biological Chemistry.

[23]  D. Granner,et al.  Insulin Regulates Expression of Metabolic Genes through Divergent Signaling Pathways , 1999, Journal of basic and clinical physiology and pharmacology.

[24]  D. Accili,et al.  Insulin Stimulates Phosphorylation of the Forkhead Transcription Factor FKHR on Serine 253 through a Wortmannin-sensitive Pathway* , 1999, The Journal of Biological Chemistry.

[25]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[26]  Zbigniew Dauter,et al.  Molecular basis of agonism and antagonism in the oestrogen receptor , 1997, Nature.

[27]  D. Accili,et al.  The forkhead transcription factor Foxo1 regulates adipocyte differentiation. , 2003, Developmental cell.

[28]  M. Greenberg,et al.  Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor , 1999, Cell.

[29]  S. Bandoh,et al.  The NGFI-B subfamily of the nuclear receptor superfamily (review). , 1998, International journal of oncology.

[30]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[31]  R J Fletterick,et al.  Structure and specificity of nuclear receptor-coactivator interactions. , 1998, Genes & development.

[32]  G. Darlington,et al.  C/EBP alpha: a critical regulator of genes governing integrative metabolic processes. , 1995, Current opinion in genetics & development.

[33]  A. Kralli,et al.  A Tissue-Specific Coactivator of Steroid Receptors, Identified in a Functional Genetic Screen , 2000, Molecular and Cellular Biology.

[34]  D. Accili,et al.  The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. , 2001, The Journal of clinical investigation.

[35]  R. Walther,et al.  Regulation of glucose-6-phosphatase gene expression by protein kinase Balpha and the forkhead transcription factor FKHR. Evidence for insulin response unit-dependent and -independent effects of insulin on promoter activity. , 2000, The Journal of biological chemistry.

[36]  V. Giguère,et al.  Orphan nuclear receptors: from gene to function. , 1999 .

[37]  M. Smidt,et al.  Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[38]  D. Accili,et al.  Regulation of insulin action and pancreatic β-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1 , 2002, Nature Genetics.

[39]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[40]  R. Fletterick,et al.  Phosphorylation and Intramolecular Stabilization of the Ligand Binding Domain in the Nuclear Receptor Steroidogenic Factor 1 , 2002, Molecular and Cellular Biology.

[41]  R. O’Brien,et al.  Regulation of Phosphoenolpyruvate Carboxykinase and Insulin-like Growth Factor-binding Protein-1 Gene Expression by Insulin , 2000, The Journal of Biological Chemistry.

[42]  R. Hanson,et al.  Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. , 1997, Annual review of biochemistry.

[43]  C. Hänni,et al.  Ligand binding was acquired during evolution of nuclear receptors. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[44]  K. Umesono,et al.  The nuclear receptor superfamily: The second decade , 1995, Cell.

[45]  M. Downes,et al.  Structure-function analysis of the Rev-erbA and RVR ligand-binding domains reveals a large hydrophobic surface that mediates corepressor binding and a ligand cavity occupied by side chains. , 2000, Molecular endocrinology.

[46]  V. Laudet,et al.  Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. , 1997, Journal of molecular endocrinology.

[47]  Jean-Paul Renaud,et al.  Crystal structure of the RAR-γ ligand-binding domain bound to all-trans retinoic acid , 1995, Nature.