Stochastic Lagrangian method for downscaling problems in computational fluid dynamics

This work aims at introducing modelization, theoretical and numerical studies related to a new downscaling technique applied to Computational Fluid Dynamics. Our method consists in building a local model, forced by large scale information computed thanks to a classical numerical weather predictor. The local model, compatible with the Navier-Stokes equations, is used for the small scale computation (downscaling) of the considered fluid. It is inspired by S.B. Pope's works on turbulence, and consists in a so-called Langevin system of stochastic differential equations. We introduce this model and exhibit its links with classical RANS models. Well-posedness, as well as mean-field interacting particle approximations and boundary condition issues are addressed. We present the numerical discretization of the stochastic downscaling method and investigate the accuracy of the proposed algorithm on simplified situations.

[1]  Andrew T. Hsu PDF methods for turbulent reactive flows , 1995 .

[2]  S. Polidoro,et al.  Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance , 2002 .

[3]  M. D. Francesco,et al.  Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form , 2006, Advances in Differential Equations.

[4]  P. Sagaut BOOK REVIEW: Large Eddy Simulation for Incompressible Flows. An Introduction , 2001 .

[5]  Mireille Bossy,et al.  Solving the Uniform Density Constraint in a Stochastic Downscaling Model , 2008 .

[6]  Mireille Bossy,et al.  SOLVING THE UNIFORM DENSITY CONSTRAINT IN A DOWNSCALING STOCHASTIC MODEL , 2007 .

[7]  P. Sagaut Large Eddy Simulation for Incompressible Flows , 2001 .

[8]  Pierre Degond,et al.  Existence of solutions and diffusion approximation for a model Fokker-Planck equation , 1987 .

[9]  Andrew James Mayfield,et al.  Adaptive mesh refinement , 1993 .

[10]  R. Stull An Introduction to Boundary Layer Meteorology , 1988 .

[11]  Christophe Pietras,et al.  Evaluation of a planetary boundary layer subgrid‐scale model that accounts for near‐surface turbulence anisotropy , 2006 .

[12]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[13]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[14]  E. Peirano,et al.  The pdf approach to turbulent polydispersed two-phase flows , 2001 .

[15]  C. Mora Weak exponential schemes for stochastic differential equations with additive noise , 2005 .

[16]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[17]  Les temps de passage successifs de l'intégrale du mouvement brownien , 1997 .

[18]  Handbook of stochastic methods volume 13 of the Springer series in synergetics , 1984 .

[19]  École d'été de probabilités de Saint-Flour,et al.  Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .

[20]  P. Raviart An analysis of particle methods , 1985 .

[21]  A. Sznitman Topics in propagation of chaos , 1991 .

[22]  O. Pironneau,et al.  Analysis of the K-epsilon turbulence model , 1994 .

[23]  J. Carrillo Global weak solutions for the initial–boundary-value problems Vlasov–Poisson–Fokker–Planck System , 1998 .

[24]  Andrea Pascucci,et al.  On a class of degenerate parabolic equations of Kolmogorov type , 2005 .

[25]  Stephen B. Pope,et al.  On the relationship between stochastic Lagrangian models of turbulence and second‐moment closures , 1994 .

[26]  Mireille Bossy,et al.  Wind Simulation Refinement: Some New Challenges for Particle Methods , 2010 .

[27]  S. Pope Lagrangian PDF Methods for Turbulent Flows , 1994 .

[28]  V. Gregory Weirs,et al.  Adaptive Mesh Refinement - Theory and Applications , 2008 .

[29]  Mireille Bossy,et al.  Stochastic downscaling method: application to wind refinement , 2009 .

[30]  H. McKean A winding problem for a resonator driven by a white noise , 1962 .

[31]  P. Degond Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions , 1986 .

[32]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[33]  J. Redelsperger,et al.  A Simple And General Subgrid Model Suitable Both For Surface Layer And Free-Stream Turbulence , 2001 .

[34]  D. Talay,et al.  On conditional McKean Lagrangian stochastic models , 2011 .

[35]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[36]  Francis H. Harlow,et al.  TRANSPORT OF TURBULENCE ENERGY DECAY RATE. , 1968 .

[37]  Jean-Luc Guermond,et al.  Calculation of Incompressible Viscous Flows by an Unconditionally Stable Projection FEM , 1997 .

[38]  A. Rousseau,et al.  Stochastic particle method applied to local wind simulation , 2007, 2007 International Conference on Clean Electrical Power.