Characterization of the Pore Structure of Monolithic Silicas

[1]  M. Thommes,et al.  Flow-through pore characteristics of monolithic silicas and their impact on column performance in high-performance liquid chromatography. , 2009, Journal of chromatography. A.

[2]  M. Thommes,et al.  Textural characterization of native and n-alky-bonded silica monoliths by mercury intrusion/extrusion, inverse size exclusion chromatography and nitrogen adsorption. , 2008, Journal of chromatography. A.

[3]  K. Unger,et al.  Particle packed columns and monolithic columns in high-performance liquid chromatography-comparison and critical appraisal. , 2008, Journal of chromatography. A.

[4]  Antonio F. Miguel,et al.  On the experimental evaluation of permeability in porous media using a gas flow method , 2007 .

[5]  Georges Guiochon,et al.  Monolithic columns in high-performance liquid chromatography. , 2007, Journal of chromatography. A.

[6]  K. Unger,et al.  Impact of pore structural parameters on column performance and resolution of reversed-phase monolithic silica columns for peptides and proteins. , 2007, Journal of chromatography. A.

[7]  K. Unger,et al.  Pore structural characterization of monolithic silica columns by inverse size-exclusion chromatography. , 2007, Journal of chromatography. A.

[8]  M. Thommes,et al.  Mercury porosimetry in mesoporous glasses: a comparison of experiments with results from a molecular model. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[9]  I. Kornhauser,et al.  Mechanistic and Experimental Aspects of the Structural Characterization of Some Model and Real Systems by Nitrogen Sorption and Mercury Porosimetry , 2006 .

[10]  G. Desmet,et al.  A discussion of the possible ways to improve the performance of silica monoliths using a kinetic plot analysis of experimental and computational plate height data. , 2006, Journal of separation science.

[11]  G. Desmet,et al.  Domain size-induced heterogeneity as performance limitation of small-domain monolithic columns and other LC support types. , 2006, Analytical chemistry.

[12]  I. Kornhauser,et al.  Domain Complexion Diagrams Related to Mercury Intrusion‐Extrusion in Monte Carlo‐Simulated Porous Networks , 2006 .

[13]  H. Giesche,et al.  Mercury Porosimetry: A General (Practical) Overview , 2006 .

[14]  S. Rigby,et al.  Using Nano‐Cast Model Porous Media and Integrated Gas Sorption to Improve Fundamental Understanding and Data Interpretation in Mercury Porosimetry , 2006 .

[15]  W. Lindner,et al.  Comprehensive pore structure characterization of silica monoliths with controlled mesopore size and macropore size by nitrogen sorption, mercury porosimetry, transmission electron microscopy and inverse size exclusion chromatography. , 2005, Journal of chromatography. A.

[16]  K. Nakanishi,et al.  Experimental validation of the tetrahedral skeleton model pressure drop correlation for silica monoliths and the influence of column heterogeneity. , 2005, Analytical chemistry.

[17]  F. Porcheron,et al.  Dynamic aspects of mercury porosimetry: a lattice model study. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[18]  A. Tannenbaum,et al.  The 3D structure of real polymer foams. , 2004, Journal of colloid and interface science.

[19]  M. Thommes PHYSICAL ADSORPTION CHARACTERIZATION OF ORDERED AND AMORPHOUS MESOPOROUS MATERIALS , 2004 .

[20]  G. Baron,et al.  General rules for the optimal external porosity of LC supports. , 2004, Analytical chemistry.

[21]  B Münch,et al.  Three‐dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography , 2004, Journal of microscopy.

[22]  T. Rao,et al.  Styrene–Divinyl Benzene Copolymers: Synthesis, Characterization, and Their Role in Inorganic Trace Analysis , 2004 .

[23]  M. Thommes,et al.  Modeling mercury porosimetry using statistical mechanics. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[24]  U. Tallarek,et al.  Chromatographic performance of monolithic and particulate stationary phases. Hydrodynamics and adsorption capacity. , 2003, Journal of chromatography. A.

[25]  A. Siouffi,et al.  Silica gel-based monoliths prepared by the sol-gel method: facts and figures. , 2003, Journal of chromatography. A.

[26]  G. Baron,et al.  A correlation for the pressure drop in monolithic silica columns. , 2003, Analytical chemistry.

[27]  G. Guiochon,et al.  Determination of the porosities of monolithic columns by inverse size-exclusion chromatography. , 2002, Journal of chromatography. A.

[28]  K. Nakanishi,et al.  Monolithic silica columns for high-efficiency chromatographic separations. , 2002, Journal of chromatography. A.

[29]  K. Nakanishi,et al.  Monolithic silica columns with various skeleton sizes and through-pore sizes for capillary liquid chromatography. , 2002, Journal of chromatography. A.

[30]  U. Tallarek,et al.  Characterization of silica-based monoliths with bimodal pore size distribution. , 2002, Analytical chemistry.

[31]  K. Nakanishi,et al.  Monolithic HPLC Silica Columns , 2002 .

[32]  A. Neimark,et al.  Characterization of nanoporous materials from adsorption and desorption isotherms , 2001 .

[33]  Constantinos E. Salmas,et al.  Mercury Porosimetry: Contact Angle Hysteresis of Materials with Controlled Pore Structure. , 2001, Journal of colloid and interface science.

[34]  Alexander V. Neimark,et al.  Capillary condensation in MMS and pore structure characterization , 2001 .

[35]  Ian Foster,et al.  A high-throughput x-ray microtomography system at the Advanced , 2001 .

[36]  K. Nakanishi,et al.  Three-Dimensional Structure of a Sintered Macroporous Silica Gel , 2001 .

[37]  X. Zhu,et al.  Evaluation of the porous structures of new polymer packing materials by inverse size-exclusion chromatography. , 2000, Journal of chromatography. A.

[38]  Soga,et al.  Performance of a monolithic silica column in a capillary under pressure-driven and electrodriven conditions , 2000, Analytical chemistry.

[39]  M. Goto,et al.  Inverse size-exclusion chromatography for distributed pore and solute sizes , 2000 .

[40]  A. Liapis,et al.  Modeling and simulation of the dynamic behavior of monoliths. Effects of pore structure from pore network model analysis and comparison with columns packed with porous spherical particles. , 1999, Journal of chromatography. A.

[41]  M. A. Day,et al.  Use of Mercury Intrusion Data, Combined with Nitrogen Adsorption Measurements, as a Probe of Pore Network Connectivity , 1999 .

[42]  I. Gusev,et al.  Capillary columns with in situ formed porous monolithic packing for micro high-performance liquid chromatography and capillary electrochromatography. , 1999, Journal of chromatography. A.

[43]  J J Meyers,et al.  Network modeling of the convective flow and diffusion of molecules adsorbing in monoliths and in porous particles packed in a chromatographic column. , 1999, Journal of chromatography. A.

[44]  Athanasios I. Liapis,et al.  Network modeling of the intraparticle convection and diffusion of molecules in porous particles packed in a chromatographic column , 1998 .

[45]  C. Kim,et al.  A liquid-filled microrelay with a moving mercury microdrop , 1997 .

[46]  J. F. Parcher,et al.  Peer Reviewed: Characterizing Polymers by MPC , 1997 .

[47]  K. Nakanishi,et al.  Effect of skeleton size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography , 1997 .

[48]  K. Nakanishi,et al.  Double pore silica gel monolith applied to liquid chromatography , 1997 .

[49]  K. Nakanishi,et al.  Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. , 1996, Analytical chemistry.

[50]  Magnus Östberg,et al.  Apparent pore size distributions of chromatography media , 1996 .

[51]  C. A. Baldwin,et al.  Determination and Characterization of the Structure of a Pore Space from 3D Volume Images , 1996 .

[52]  Kazuki Nakanishi,et al.  Phase Separation in Gelling Silica–Organic Polymer Solution: Systems Containing Poly(sodium styrenesulfonate) , 1991 .

[53]  F. Rojas,et al.  EFFECT OF POROUS STRUCTURE ON THE DETERMINATION OF PORE-SIZE DISTRIBUTION BY MERCURY POROSIMETRY AND NITROGEN SORPTION , 1991 .

[54]  S. Lowell,et al.  Hysteresis, entrapment, and wetting angle in mercury porosimetry , 1981 .

[55]  L. Moscou,et al.  Practical use of mercury porosimetry in the study of porous solids , 1981 .

[56]  S. Lowell,et al.  Influence of contact angle on hysteresis in mercury porosimetry , 1981 .

[57]  I. Halasz,et al.  Pore Sizes of Solids , 1978 .

[58]  E. Casassa Equilibrium distribution of flexible polymer chains between a macroscopic solution phase and small voids , 1967 .

[59]  L. C. Drake Pore-Size Distribution in Porous Materials , 1949 .

[60]  L. C. Drake,et al.  Macropore-Size Distributions in Some Typical Porous Substances , 1945 .

[61]  L. C. Drake,et al.  Pressure Porosimeter and Determination of Complete Macropore-Size Distributions. Pressure Porosimeter and Determination of Complete Macropore-Size Distributions , 1945 .

[62]  P. Carman,et al.  Capillary Rise and Capillary Movement of Moisture in Fine Sands , 1941 .

[63]  Manfred von Ardenne,et al.  Das Elektronen-Rastermikroskop , 1938 .

[64]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[65]  E. W. Washburn The Dynamics of Capillary Flow , 1921 .

[66]  K. Unger,et al.  Evaluation and comparison of the pore structure and related properties of particulate and monolithic silicas for liquid phase separation processes , 2002 .

[67]  K. Nakanishi,et al.  A New Monolithic‐Type HPLC Column For Fast Separations , 2000 .

[68]  K. Nakanishi,et al.  SilicaROD™ — A new challenge in fast high-performance liquid chromatography separations , 1998 .

[69]  H. Giesche Special Hysteresis Effects in N 2 -Sorption and Mercury-Porosimetry Measurements , 1996 .

[70]  K. Nakanishi,et al.  Phase separation in silica sol-gel system containing polyacrylic acid. II : Effects of molecular weight and temperature , 1992 .

[71]  Kazuki Nakanishi,et al.  Phase separation in silica sol-gel system containing polyacrylic acid I. Gel formaation behavior and effect of solvent composition , 1992 .

[72]  A. Gorbunov,et al.  Fundamentals of the theory and practice of polymer gel-permeation chromatography as a method of chromatographic porosimetry , 1988 .

[73]  S. Kuga Chapter 6 Structural Analysis of Porous Materials By Measurement of Size Exclusion , 1988 .

[74]  J. Knox,et al.  Theoretical models for size-exclusion chromatography and calculation of pore size distribution from size-exclusion chromatography data , 1984 .

[75]  J. Kálal,et al.  Investigation of the surface structure of polymers by chromatographic methods. V: Use of gel permeation chromatography in the study of the porous structure of copolymers of glycidyl methacrylate , 1983 .

[76]  E. Casassa Comments on exclusion of polymer chains from small pores and its relation to gel permeation chromatography. , 1976, Macromolecules.

[77]  Y. Tagami,et al.  An Equilibrium Theory for Exclusion Chromatography of Branched and Linear Polymer Chains , 1969 .

[78]  E. Barrett,et al.  (CONTRIBUTION FROM THE MULTIPLE FELLOWSHIP OF BAUGH AND SONS COMPANY, MELLOX INSTITUTE) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms , 1951 .

[79]  R. Pierotti,et al.  International Union of Pure and Applied Chemistry Physical Chemistry Division Commission on Colloid and Surface Chemistry including Catalysis* Reporting Physisorption Data for Gas/solid Systems with Special Reference to the Determination of Surface Area and Porosity Reporting Physisorption Data for , 2022 .