Gradient-Enhanced Universal Kriging with Polynomial Chaos as Trend Function

[1]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[2]  A. D. Hoang,et al.  Coupled Aerostructural Design Optimization Using the Kriging Model and Integrated Multiobjective Optimization Algorithm , 2009, J. Optimization Theory and Applications.

[3]  J. Wiart,et al.  Polynomial-Chaos-based Kriging , 2015, 1502.03939.

[4]  Richard P. Dwight,et al.  Uncertainty quantification for a sailing yacht hull, using multi-fidelity kriging , 2015 .

[5]  Agus Sudjianto,et al.  Blind Kriging: A New Method for Developing Metamodels , 2008 .

[6]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[7]  Joaquim R. R. A. Martins,et al.  Surrogate models and mixtures of experts in aerodynamic performance prediction for mission analysis , 2014 .

[8]  Joaquim R. R. A. Martins,et al.  Open-source coupled aerostructural optimization using Python , 2018 .

[9]  Tom Dhaene,et al.  Performance study of multi-fidelity gradient enhanced kriging , 2015 .

[10]  P. Sagaut,et al.  Building Efficient Response Surfaces of Aerodynamic Functions with Kriging and Cokriging , 2008 .

[11]  Tao Zhou,et al.  A gradient enhanced ℓ1-minimization for sparse approximation of polynomial chaos expansions , 2018, J. Comput. Phys..

[12]  Kyung K. Choi,et al.  Metamodeling Method Using Dynamic Kriging for Design Optimization , 2011 .

[13]  Zhonghua Han,et al.  Efficient Uncertainty Quantification using Gradient-Enhanced Kriging , 2009 .

[14]  Pramudita Satria Palar,et al.  Multi-Fidelity Uncertainty Analysis in CFD Using Hierarchical Kriging , 2017 .

[15]  Andy J. Keane,et al.  Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .

[16]  Joaquim R. R. A. Martins,et al.  Surrogate models and mixtures of experts in aerodynamic performance prediction for aircraft mission analysis , 2015 .

[17]  Weiyu Liu,et al.  Gradient-Enhanced Response Surface Approximations Using Kriging Models , 2002 .

[18]  Alireza Doostan,et al.  On polynomial chaos expansion via gradient-enhanced ℓ1-minimization , 2015, J. Comput. Phys..

[19]  Lyes Nechak,et al.  Sensitivity analysis and Kriging based models for robust stability analysis of brake systems , 2015 .

[20]  Pramudita Satria Palar,et al.  On efficient global optimization via universal Kriging surrogate models , 2017, Structural and Multidisciplinary Optimization.

[21]  John C. Brigham,et al.  Efficient global sensitivity analysis for flow-induced vibration of a nuclear reactor assembly using Kriging surrogates , 2019, Nuclear Engineering and Design.

[22]  KersaudyPierric,et al.  A new surrogate modeling technique combining Kriging and polynomial chaos expansions - Application to uncertainty analysis in computational dosimetry , 2015 .

[23]  Mihai Anitescu,et al.  Gradient-Enhanced Universal Kriging for Uncertainty Propagation , 2012 .

[24]  Yu Zhang,et al.  Weighted Gradient-Enhanced Kriging for High-Dimensional Surrogate Modeling and Design Optimization , 2017 .

[25]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[26]  Farrokh Mistree,et al.  Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization , 2001 .

[27]  Joaquim R. R. A. Martins,et al.  Gradient-enhanced kriging for high-dimensional problems , 2017, Engineering with Computers.

[28]  Joe Wiart,et al.  A new surrogate modeling technique combining Kriging and polynomial chaos expansions - Application to uncertainty analysis in computational dosimetry , 2015, J. Comput. Phys..

[29]  Kazuomi Yamamoto,et al.  Efficient Optimization Design Method Using Kriging Model , 2005 .

[30]  Olivier Dubrule,et al.  Cross validation of kriging in a unique neighborhood , 1983 .

[31]  Sondipon Adhikari,et al.  A Critical Assessment of Kriging Model Variants for High-Fidelity Uncertainty Quantification in Dynamics of composite Shells , 2016, Archives of Computational Methods in Engineering.

[32]  Pramudita Satria Palar,et al.  A comparative study of multi-objective expected improvement for aerodynamic design , 2019, Aerospace Science and Technology.