Response of the Ocean Natural Carbon Storage to Projected Twenty-First-Century Climate Change

The separate impacts of wind stress, buoyancy fluxes, and CO2 solubility on the oceanic storage of natural carbon are assessed in an ensemble of twentieth- to twenty-first-century simulations, using a coupled atmosphere‐ocean‐carbon cycle model. Time-varying perturbations for surface wind stress, temperature, and salinity are calculated from the difference between climate change and preindustrial control simulations, and are imposed on the ocean in separate simulations. The response of the natural carbon storage to each perturbation is assessed with novel prognostic biogeochemical tracers, which can explicitly decompose dissolved inorganic carbon into biological, preformed, equilibrium, and disequilibrium components. Strong responses of these components to changes in buoyancy and winds are seen at high latitudes, reflecting the critical role of intermediate and deep waters. Overall, circulation-driven changes in carbon storage are mainly due to changes in buoyancy fluxes, with wind-driven changes playing an opposite but smaller role. Results suggest that climate-driven perturbations to the ocean natural carbon cycle will contribute 20PgC to the reduction of the ocean accumulated total carbon uptake over the period 1860‐2100. This reflects a strong compensation between a buildup of remineralized organic matter associated with reduced deep-water formation (196PgC) and a decrease of preformed carbon (2116PgC). The latter is due to a warming-induced decrease in CO2 solubility (252PgC) and a circulation-induced decrease in disequilibrium carbon storage (264PgC). Climate change gives rise to a large spatial redistribution of ocean carbon, with increasing concentrations at high latitudes and stronger vertical gradients at low latitudes.

[1]  Eric D. Galbraith,et al.  Cessation of deep convection in the open Southern Ocean under anthropogenic climate change , 2014 .

[2]  B. Samuels,et al.  The Deep Ocean Buoyancy Budget and Its Temporal Variability , 2014 .

[3]  A. Oschlies,et al.  A novel estimate of ocean oxygen utilisation points to a reduced rate of respiration in the ocean interior , 2013 .

[4]  A. Hogg,et al.  Southern Ocean Circulation and Eddy Compensation in CMIP5 Models , 2013 .

[5]  Dongxiao Zhang,et al.  Atlantic Meridional Overturning Circulation (AMOC) in CMIP5 Models: RCP and Historical Simulations , 2013 .

[6]  Tyler Volk,et al.  Ocean Carbon Pumps: Analysis of Relative Strengths and Efficiencies in Ocean‐Driven Atmospheric CO2 Changes , 2013 .

[7]  D. Waugh,et al.  Recent Changes in the Ventilation of the Southern Oceans , 2013, Science.

[8]  M. Follows,et al.  Wind-driven changes in Southern Ocean residual circulation, ocean carbon reservoirs and atmospheric CO2 , 2013, Climate Dynamics.

[9]  H. Tsujino,et al.  Formation mechanism of the Weddell Sea Polynya and the impact on the global abyssal ocean , 2012, Journal of Oceanography.

[10]  S. Rintoul,et al.  Localized subduction of anthropogenic carbon dioxide in the Southern Hemisphere oceans , 2012 .

[11]  C. Sweeney,et al.  The observed evolution of oceanic pCO2 and its drivers over the last two decades , 2012 .

[12]  M. Gehlen,et al.  Standing and Transient Eddies in the Response of the Southern Ocean Meridional Overturning to the Southern Annular Mode , 2012 .

[13]  Ronald,et al.  GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics , 2012 .

[14]  James D. Scott,et al.  Enhanced upper ocean stratification with climate change in the CMIP3 models , 2012 .

[15]  A. Karpechko,et al.  Sensitivity of the southern annular mode to greenhouse gas emission scenarios , 2012, Climate Dynamics.

[16]  J. Sarmiento,et al.  Preformed and regenerated phosphate in ocean general circulation models: can right total concentrations be wrong? , 2011 .

[17]  Veronika Eyring,et al.  Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing , 2011 .

[18]  J. Marotzke,et al.  Monitoring the Atlantic meridional overturning circulation , 2011 .

[19]  J. Toggweiler,et al.  The control of atmospheric pCO2 by ocean ventilation change: The effect of the oceanic storage of biogenic carbon , 2011 .

[20]  J. Sarmiento,et al.  Climate Variability and Radiocarbon in the CM2Mc Earth System Model , 2011 .

[21]  Michael P. Meredith,et al.  Sensitivity of the Overturning Circulation in the Southern Ocean to Decadal Changes in Wind Forcing , 2011 .

[22]  C. Deser,et al.  Large cancellation, due to ozone recovery, of future Southern Hemisphere atmospheric circulation trends , 2011 .

[23]  G. Meehl,et al.  Future climate change in the Southern Hemisphere: Competing effects of ozone and greenhouse gases , 2011 .

[24]  C. Rödenbeck,et al.  Impact of climate change and variability on the global oceanic sink of CO2 , 2010 .

[25]  N. Gillett,et al.  Influence of ozone recovery and greenhouse gas increases on Southern Hemisphere circulation , 2010 .

[26]  T. Delworth,et al.  The Role of Mesoscale Eddies in the Remote Oceanic Response to Altered Southern Hemisphere Winds , 2010 .

[27]  S. Wijffels,et al.  Fifty-Year Trends in Global Ocean Salinities and Their Relationship to Broad-Scale Warming , 2010 .

[28]  Stephen M. Griffies,et al.  The Role of Mesoscale Eddies in the Rectification of the Southern Ocean Response to Climate Change , 2010 .

[29]  G. Haug,et al.  The polar ocean and glacial cycles in atmospheric CO2 concentration , 2010, Nature.

[30]  A. Ridgwell,et al.  Ocean‐atmosphere partitioning of anthropogenic carbon dioxide on multimillennial timescales , 2010 .

[31]  L. Bopp,et al.  Water masses as a unifying framework for understanding the Southern Ocean Carbon Cycle , 2010 .

[32]  Taka Ito,et al.  Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow , 2010, Nature.

[33]  L. Polvani,et al.  Ozone hole and Southern Hemisphere climate change , 2009 .

[34]  T. Lenton,et al.  Quantifying the feedback between ocean heating and CO2 solubility as an equivalent carbon emission , 2009 .

[35]  A. Gnanadesikan,et al.  Regional impacts of iron-light colimitation in a global biogeochemical model , 2009 .

[36]  S. Rintoul,et al.  The response of the Antarctic Circumpolar Current to recent climate change , 2008 .

[37]  A. Lenton,et al.  Impact of Historical Climate Change on the Southern Ocean Carbon Cycle , 2008 .

[38]  T. Delworth,et al.  Simulated impact of altered Southern Hemisphere winds on the Atlantic Meridional Overturning Circulation , 2008 .

[39]  S. Doney,et al.  Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink , 2008 .

[40]  J. Toggweiler,et al.  Impact of oceanic circulation on biological carbon storage in the ocean and atmospheric pCO2 , 2008 .

[41]  J. Sarmiento,et al.  How does ocean biology affect atmospheric pCO2? Theory and models , 2008 .

[42]  R. Francey,et al.  Comment on "Saturation of the Southern Ocean CO2 Sink Due to Recent Climate Change" , 2008, Science.

[43]  Robert E. Davis,et al.  Winter jet stream trends over the Northern Hemisphere , 2007 .

[44]  N. Nakicenovic,et al.  Scenarios of long-term socio-economic and environmental development under climate stabilization , 2007 .

[45]  Casper Labuschagne,et al.  Saturation of the Southern Ocean CO2 Sink Due to Recent Climate Change , 2007, Science.

[46]  A. Lenton,et al.  Role of the Southern Annular Mode (SAM) in Southern Ocean CO2 uptake , 2007 .

[47]  M. Levasseur,et al.  Ocean Biogeochemical Dynamics , 2007 .

[48]  M. Follows,et al.  Ocean‐atmosphere partitioning of anthropogenic carbon dioxide on centennial timescales , 2007 .

[49]  Robert Hallberg,et al.  The Role of Eddies in Determining the Structure and Response of the Wind-Driven Southern Hemisphere Overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) Project , 2006 .

[50]  J. Toggweiler,et al.  The Southern Ocean biogeochemical divide , 2006, Nature.

[51]  Jorge L. Sarmiento,et al.  Ocean Biogeochemical Dynamics , 2006 .

[52]  J. Dunne,et al.  Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions , 2006 .

[53]  J. Sarmiento,et al.  Empirical and mechanistic models for the particle export ratio , 2005 .

[54]  B. Samuels,et al.  Formulation of an ocean model for global climate simulations , 2005 .

[55]  Michael J. Follows,et al.  Preformed phosphate, soft tissue pump and atmospheric CO 2 , 2005 .

[56]  E. Maier‐Reimer,et al.  Sea‐to‐air CO2 flux from 1948 to 2003: A model study , 2005 .

[57]  E. Boyle,et al.  Is AOU a good measure of respiration in the oceans? , 2004, Geophysical Research Letters.

[58]  Nicolas Gruber,et al.  The Oceanic Sink for Anthropogenic CO2 , 2004, Science.

[59]  M. Follows,et al.  What controls the uptake of transient tracers in the Southern Ocean? , 2004 .

[60]  V. Brovkin,et al.  The importance of ocean temperature to global biogeochemistry , 2004 .

[61]  R. Slater,et al.  A new estimate of the CaCO3 to organic carbon export ratio , 2002 .

[62]  P. Milly,et al.  Global Modeling of Land Water and Energy Balances. Part I: The Land Dynamics (LaD) Model , 2002 .

[63]  David W. J. Thompson,et al.  Interpretation of Recent Southern Hemisphere Climate Change , 2002, Science.

[64]  E. Boyle,et al.  Glacial/interglacial variations in atmospheric carbon dioxide , 2000, Nature.

[65]  A. Hirst,et al.  Climate change feedback on the future oceanic CO2 uptake , 1999 .

[66]  Syukuro Manabe,et al.  Simulated response of the ocean carbon cycle to anthropogenic climate warming , 1998, Nature.

[67]  T. Stocker,et al.  An improved method for detecting anthropogenic CO2 in the oceans , 1996 .

[68]  J. Sarmiento,et al.  Oceanic Carbon Dioxide Uptake in a Model of Century-Scale Global Warming , 1996, Science.

[69]  Jorge L. Sarmiento,et al.  Redfield ratios of remineralization determined by nutrient data analysis , 1994 .

[70]  Louis I. Gordon,et al.  Oxygen solubility in seawater : better fitting equations , 1992 .

[71]  R. Wanninkhof Relationship between wind speed and gas exchange over the ocean , 1992 .

[72]  David M. Karl,et al.  VERTEX: carbon cycling in the northeast Pacific , 1987 .

[73]  F. Sayles CaCO3 solubility in marine sediments: Evidence for equilibrium and non-equilibrium behavior , 1985 .

[74]  J. Toggweiler,et al.  A new model for the role of the oceans in determining atmospheric PCO2 , 1984, Nature.

[75]  F. Millero,et al.  Gradual increase of oceanic CO2 , 1979, Nature.

[76]  P. Brewer Direct observation of the oceanic CO2 increase , 1978 .

[77]  Wallace S. Broecker,et al.  “NO”, a conservative water-mass tracer , 1974 .

[78]  Lisa Dresner,et al.  Ocean Dynamics And The Carbon Cycle Principles And Mechanisms , 2016 .

[79]  J. Sarmiento,et al.  Climate Variability and Radiocarbon in the CM 2 Mc Earth System Model , 2011 .

[80]  M. Follows,et al.  MECHANISMS CONTROLLING THE AIR-SEA FLUX OF CO2 IN THE NORTH ATLANTIC , 2004 .

[81]  Richard G. Williams MECHANISMS CONTROLLING THE AIR-SEA FLUX OF , 2004 .

[82]  Brian J. Rothschild,et al.  Biological-physical interactions in the sea , 2002 .

[83]  J. Sarmiento,et al.  Chapter 9. Large-scale Biogeochemical–physical Interactions in Elemental Cycles , 2001 .

[84]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .