Present Status of Polymer: Ceramic Composites for Pyroelectric Infrared Detectors

‘Ferroelectrics:Polymer’ composites can be considered an established substitute to conventional electro-ceramics and to ferroelectric polymers. The composites have unique blend of polymeric properties such as mechanical flexibility, high strength, formability, and low cost with high electro-active properties of ceramic materials. It has attracted considerable interest because of their potential use in pyroelectric infrared detecting devices and piezoelectric transducers. These flexible sensors and transducers may eventually be useful for NASA crew launch vehicles and crew exploration vehicles being developed for their health monitoring applications. In the light of many technologically important applications in this field; it is worthwhile to present an overview of the pyroelectric infrared detector theory, models to predict dielectric behavior and pyroelectric coefficient in conjunction with the concept of connectivity and fabrication techniques of biphasic composites. An elaborate review of ‘Pyroelectric: Polymer’ composite materials investigated to date for their potential use in pyroelectric infrared detectors is presented.

[1]  M. Alexe,et al.  Thermal analysis of the pyroelectric bimorph as radiation detector , 1995 .

[2]  P. Marin-Franch,et al.  Piezo-, pyro-, ferro-, and dielectric properties of ceramic/polymer composites obtained from two modifications of lead titanate , 2005 .

[3]  R. Nath,et al.  Simultaneous stretching and corona poling of PVDF films , 1991 .

[4]  D. Das-gupta,et al.  Piezo-, pyro-, ferroelectric, and dielectric properties of (Pb0.88Sm0.08)(Ti1−xMnx)O3/polyetherketoneketone 50/50 vol % ceramic/polymer composites , 2002 .

[5]  C. L. Choy,et al.  Dielectric and pyroelectric properties of P(VDF-TrFE) and PCLT–P(VDF-TrFE) 0–3 nanocomposite films , 1999 .

[6]  Robert E. Newnham,et al.  Functional composites for sensors, actuators and transducers , 1999 .

[7]  H. D. Sharma,et al.  Dielectric and pyroelectric characteristics of PZT doped with gadolinium , 1994 .

[8]  G. Gerlach,et al.  Pyroelectric IR-detector arrays based on sputtered PZT and spin-coated P(VDF/TrFE) thin films , 1998 .

[9]  Bernd Ploss,et al.  Integrated pyroelectric array based on PCLT/P(VDF-TrFE) composite , 2000 .

[10]  H. Osman,et al.  Pyroelectricity in rubber composite films , 1988 .

[11]  D. Das-gupta,et al.  Characterization and application of PZT/PU and graphite doped PZT/PU composite , 2002 .

[12]  A. Mineshige,et al.  Preparation and Pyroelectric Properties of Mn-Modified (Pb, La)(Zr, Ti)O3 (PLZT) Ceramics , 1997 .

[13]  C. Choy,et al.  Pyroelectric and piezoelectric properties of lead titanate/polyvinylidene fluoride-trifluoroethylene 0-3 composites , 1998 .

[14]  D. Das-gupta Ferroelectric polymers and ceramic-polymer composites , 1994 .

[15]  PCLT/P(VDF-TrFE) nanocomposite pyroelectric sensors , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[16]  M. Olszowy Dielectric and pyroelectric properties of the composites of ferroelectric ceramic and poly(vinyl chloride) , 2003 .

[17]  I.P. Kaminow,et al.  Principles and applications of ferroelectrics and related materials , 1978, Proceedings of the IEEE.

[18]  Y. Poon,et al.  Dielectric and pyroelectric properties of lead zirconate titanate/polyurethane composites , 2004 .

[19]  Li Jinhua,et al.  Preparation of PCLT/P(VDF-TrFE) pyroelectric sensor based on plastic film substrate , 2002 .

[20]  F. G. Shin,et al.  Pyroelectric activity of ferroelectric PT/PVDF-TRFE , 2000 .

[21]  E. Suaste-Gómez,et al.  Pyroelectric properties of Pb0.88Ln0.08Ti0.98Mn0.02O3 (Ln=La, Sm, Eu) ferroelectric ceramic system , 2003 .

[22]  L. E. Cross,et al.  Connectivity and piezoelectric-pyroelectric composites , 1978 .

[23]  B. Satish,et al.  Piezoelectric properties of ferroelectric PZT-polymer composites , 2001 .

[24]  Boming Yu,et al.  Pyroelectric properties of ferroelectric ceramic/ferroelectric polymer 0–3 composites , 2003 .

[25]  D. K. Das-Gupta,et al.  Inorganic ceramic/polymer ferroelectric composite electrets , 1996 .

[26]  Roger W. Whatmore,et al.  Pyroelectric devices and materials , 1986 .

[27]  C. Choy,et al.  Dielectric Behaviour and Polarization Response of Proton Irradiated Ba0.65Sr0.35TiO3/P(VDF-TrFE) Composites , 2002 .

[28]  Siegfried Bauer,et al.  Interference effects of thermal waves and their application to bolometers and pyroelectric detectors , 1991 .

[29]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[30]  Takeshi Yamada,et al.  Piezoelectricity of a high‐content lead zirconate titanate/polymer composite , 1982 .

[31]  Roger W. Whatmore,et al.  Pyroelectric ceramics in the lead zirconate-lead titanate-lead iron niobate system , 1981 .

[32]  C. Choy,et al.  Poling study of PZT/P(VDF–TrFE) composites , 2001 .

[33]  Helen L. W. Chan,et al.  Effect of poling procedure on the properties of lead zirconate titanate/vinylidene fluoride-trifluoroethylene composites , 1999 .

[34]  C. Dias,et al.  Piezo- and Pyroelectricity in Ferroelectric Ceramic-Polymer Composites , 1994 .

[35]  Ravindra B. Lal,et al.  Growth and properties of triglycine sulfate (TGS) crystals: Review , 1993 .

[36]  R. B. Lal,et al.  Modified triglycine sulphate (TGS) single crystals for pyroelectric infrared detector applications , 1992 .

[37]  H. Banno Theoretical Equations for Dielectric and Piezoelectric Properties of Ferroelectric Composites Based on Modified Cubes Model , 1985 .

[38]  L. E. Cross,et al.  Pyroelectric PZT-polymer composites , 1981 .

[39]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[40]  Hari Singh Nalwa,et al.  Ferroelectric Polymers : Chemistry: Physics, and Applications , 1995 .

[41]  Andrew G. Glen,et al.  APPL , 2001 .

[42]  Robert Bruce Lindsay,et al.  Physical Properties of Crystals , 1957 .

[43]  D. Das-gupta,et al.  Measurement of the pyroelectric coefficient in composites using a temperature-modulated excitation , 1993 .

[44]  José Antonio Malmonge,et al.  Study of pyroelectric activity of PZT/PVDF-HFP composite , 2003 .

[45]  V. Myroshnychenko,et al.  Modeling dielectric properties of composites by finite-element method , 2002 .

[46]  S. Lang,et al.  Pyroelectricity: Fundamentals and applications , 2001 .

[47]  W. Sakamoto,et al.  Voltage responsivity of pyroelectric sensor , 1999 .

[48]  W. Zhong,et al.  Pyroelectric properties of ferroelectric‐polymer composite , 1993 .

[49]  S. T. Liu,et al.  Use of effective field theory to predict relationships among ferroelectric parameters , 1976 .

[50]  R. Lal,et al.  Growth and Characterization of Doped TGS Crystals for Infrared Devices , 2002 .

[51]  Sihai Wen,et al.  Pyroelectric behavior of cement-based materials , 2003 .

[52]  S. Sikdar,et al.  Fundamentals and applications , 1998 .

[53]  K. Lam,et al.  Piezoelectric and pyroelectric properties of 65PMN-35PT/P(VDF-TrFE) 0-3 composites , 2005 .

[54]  D. K. Das-Gupta,et al.  Electrical properties of ceramic/polymer composites , 1990 .

[55]  Bernd Ploss,et al.  Pyroelectric or piezoelectric compensated ferroelectric composites , 2000 .

[56]  H. Yamazaki,et al.  Pyroelectric properties of polymer-ferroelectric composites , 1981 .

[57]  Bernd Ploss,et al.  Primary and secondary pyroelectric effects of ferroelectric 0-3 composites , 2003 .

[58]  P. Pillai,et al.  Pyroelectric Behavior in Barium Titante/Polyvintlidene Fluoride Composites , 1986, IEEE Transactions on Electrical Insulation.

[59]  M. Kosec,et al.  Dielectric and Pyroelectric Response of PLZT-P(VDF/TrFE) Nanocomposites , 2003 .

[60]  K. Lam,et al.  Piezoelectric and pyroelectric properties of (Bi 0.5Na 0.5) 0.94Ba 0.06TiO 3/P(VDF-TrFE) 0–3 composites , 2005 .

[61]  S. Suryanarayana,et al.  PIEZOELECTRIC POLYMER COMPOSITE MATERIALS , 1998 .

[62]  C. Nan Product property between thermal expansion and piezoelectricity in piezoelectric composites: pyroelectricity , 1994 .

[63]  D. Das-gupta,et al.  Electroactive properties of polymer-ceramic composites , 1988 .

[64]  C. Fang,et al.  Study on the pyroelectric properties of TGS-PVDF composites , 1991 .