A multi-channel spatio-temporal Hammerstein modeling approach for nonlinear distributed parameter processes

Abstract Modeling of distributed parameter processes is a challenging problem because of their complex spatio-temporal nature, nonlinearities and uncertainties. In this study, a spatio-temporal Hammerstein modeling approach is proposed for nonlinear distributed parameter processes. Firstly, the static nonlinear and the distributed dynamical linear parts of the Hammerstein model are expanded onto a set of spatial and temporal basis functions. In order to reduce the parametric complexity, the Karhunen–Loeve decomposition is used to find the dominant spatial bases with Laguerre polynomials selected as the temporal bases. Then, using the Galerkin method, the spatio-temporal modeling will be reduced to a traditional temporal modeling problem. Finally, the unknown parameters can be easily estimated using the least squares estimation and the singular value decomposition. In the presence of unmodeled dynamics, a multi-channel modeling framework is proposed to further improve the modeling performance. The convergence of the modeling can be guaranteed under certain conditions. The simulations are presented to show the effectiveness of this modeling method and its potential to a wide range of distributed processes.

[1]  Panagiotis D. Christofides,et al.  Nonlinear and Robust Control of Pde Systems , 2001 .

[2]  R.A. Sahan,et al.  Artificial neural network-based modeling and intelligent control of transitional flows , 1997, Proceedings of the 1997 IEEE International Conference on Control Applications.

[3]  B. Wahlberg System identification using Laguerre models , 1991 .

[4]  Lennart Ljung,et al.  Nonlinear Black Box Modeling in System Identification , 1995 .

[5]  William R. Cluett,et al.  Optimal choice of time-scaling factor for linear system approximations using Laguerre models , 1994, IEEE Trans. Autom. Control..

[6]  B. M. Mohan,et al.  Orthogonal Functions in Systems and Control , 1995 .

[7]  L. Ljung Convergence analysis of parametric identification methods , 1978 .

[8]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[9]  P. Christofides,et al.  Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes , 2002 .

[10]  W. Ray,et al.  Identification and control of distributed parameter systems by means of the singular value decomposition , 1995 .

[11]  Er-Wei Bai An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Autom..

[12]  Costas J. Spanos,et al.  Advanced process control , 1989 .

[13]  K. Narendra,et al.  An iterative method for the identification of nonlinear systems using a Hammerstein model , 1966 .

[14]  Panagiotis D. Christofides,et al.  Robust Control of Parabolic PDE Systems , 1998 .

[15]  Ricardo J. G. B. Campello,et al.  Optimal expansions of discrete-time Volterra models using Laguerre functions , 2003, Autom..

[16]  A. Palazoglu,et al.  Nolinear model predictive control using Hammerstein models , 1997 .

[17]  P. V. D. Hof,et al.  A generalized orthonormal basis for linear dynamical systems , 1995, IEEE Trans. Autom. Control..

[18]  Han-Fu Chen,et al.  Pathwise convergence of recursive identification algorithms for Hammerstein systems , 2004, IEEE Transactions on Automatic Control.

[19]  P. Stoica On the convergence of an iterative algorithm used for Hammerstein system identification , 1981 .

[20]  A. Chorin New perspectives in turbulence , 1998 .

[21]  H. Park,et al.  The use of the Karhunen-Loève decomposition for the modeling of distributed parameter systems , 1996 .

[22]  Yucai Zhu Identification of Hammerstein models for control using ASYM , 2000 .

[23]  Stanley H. Johnson,et al.  Use of Hammerstein Models in Identification of Nonlinear Systems , 1991 .

[24]  G. Dumont,et al.  Deterministic adaptive control based on Laguerre series representation , 1988 .

[25]  Guanrong Chen,et al.  Spectral-approximation-based intelligent modeling for distributed thermal processes , 2005, IEEE Transactions on Control Systems Technology.

[26]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[27]  Stephen A. Billings,et al.  Identification of finite dimensional models of infinite dimensional dynamical systems , 2002, Autom..

[28]  M. Willis,et al.  ADVANCED PROCESS CONTROL , 2005 .

[29]  S. Berman Stationary and Related Stochastic Processes , 1967 .

[30]  K. Hoo,et al.  Low-Order Model Identification of Distributed Parameter Systems by a Combination of Singular Value Decomposition and the Karhunen−Loève Expansion , 2002 .

[31]  harald Cramer,et al.  Stationary And Related Stochastic Processes , 1967 .

[32]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[33]  Feng Ding,et al.  Identification of Hammerstein nonlinear ARMAX systems , 2005, Autom..

[34]  Jozef Vörös,et al.  Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones , 2003, IEEE Trans. Autom. Control..

[35]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[36]  Enrique Baeyens,et al.  Identification of block-oriented nonlinear systems using orthonormal bases , 2004 .

[37]  N. Smaoui,et al.  Modelling the dynamics of nonlinear partial differential equations using neural networks , 2004 .

[38]  Er-Wei Bai,et al.  Convergence of the iterative Hammerstein system identification algorithm , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[39]  Andrew J. Newman Model Reduction via the Karhunen-Loeve Expansion Part II: Some Elementary Examples , 1996 .

[40]  Wlodzimierz Greblicki Continuous-time Hammerstein system identification from sampled data , 2006, IEEE Transactions on Automatic Control.

[41]  B. Wahlberg System identification using Kautz models , 1994, IEEE Trans. Autom. Control..

[42]  Noël Tanguy,et al.  Online optimization of the time scale in adaptive Laguerre-based filters , 2000, IEEE Trans. Signal Process..