Invariant Gabor Texture Descriptors for Classification of Gastroenterology Images

Automatic classification of lesions for gastroenterology imaging scenarios poses novel challenges to computer-assisted decision systems, which are mostly attributed to the dynamics of the image acquisition conditions. Such challenges demand that automatic systems are able to give robust characterizations of tissues irrespective of camera rotation, zoom, and illumination gradients when viewing the inner surface of the gastrointestinal tract. In this paper, we study the invariance properties of Gabor filters and propose a novel descriptor, the autocorrelation Gabor features (AGF). We show that our proposed AGF is invariant to scale, rotation, and illumination changes in the images. We integrate these new features in a texton framework (Texton-AGF) to classify images from two complementary gastroenterology imaging scenarios (chromoendoscopy and narrow-band imaging) broadly into three different groups: normal, precancerous, and cancerous. Results show that they compare favorably to using state-of-the-art texture descriptors for both imaging modalities.

[1]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[2]  Gabriel Cristóbal,et al.  Self-Invertible 2D Log-Gabor Wavelets , 2007, International Journal of Computer Vision.

[3]  Md. Monirul Islam,et al.  Content based image retrieval using curvelet transform , 2008, 2008 IEEE 10th Workshop on Multimedia Signal Processing.

[4]  Hamid Soltanian-Zadeh,et al.  Radon transform orientation estimation for rotation invariant texture analysis , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Prabir Kumar Biswas,et al.  Rotation invariant texture classification using even symmetric Gabor filters , 2003, Pattern Recognit. Lett..

[6]  Anil K. Jain,et al.  Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.

[7]  Chengjun Liu,et al.  Horizontal and Vertical 2DPCA-Based Discriminant Analysis for Face Verification on a Large-Scale Database , 2007, IEEE Transactions on Information Forensics and Security.

[8]  Andrew Zisserman,et al.  A Statistical Approach to Texture Classification from Single Images , 2004, International Journal of Computer Vision.

[9]  Janne Heikkilä,et al.  A new class of shift-invariant operators , 2004, IEEE Signal Processing Letters.

[10]  Gerlind Plonka-Hoch,et al.  The Curvelet Transform , 2010, IEEE Signal Processing Magazine.

[11]  Qionghai Dai,et al.  Efficient rotation- and scale-invariant texture classification method based on Gabor wavelets , 2008, J. Electronic Imaging.

[12]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[13]  Md. Monirul Islam,et al.  Rotation invariant curvelet features for texture image retrieval , 2009, 2009 IEEE International Conference on Multimedia and Expo.

[14]  Kunio Doi,et al.  Computer-aided diagnosis in medical imaging: Historical review, current status and future potential , 2007, Comput. Medical Imaging Graph..

[15]  Shih-Fu Chang,et al.  Overview of the MPEG-7 standard , 2001, IEEE Trans. Circuits Syst. Video Technol..

[16]  Nicholas Ayache,et al.  Content-Based Retrieval in Endomicroscopy: Toward an Efficient Smart Atlas for Clinical Diagnosis , 2011, MCBR-CDS.

[17]  Song-Chun Zhu,et al.  What are Textons? , 2005, International Journal of Computer Vision.

[18]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[19]  B. S. Manjunath,et al.  Rotation-invariant texture classification using a complete space-frequency model , 1999, IEEE Trans. Image Process..

[20]  Miguel Tavares Coimbra,et al.  IDentifying cancer regions in vital-stained magnification endoscopy images using adapted color histograms , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[21]  Tom Fawcett,et al.  ROC Graphs: Notes and Practical Considerations for Researchers , 2007 .

[22]  K. Garsed,et al.  Narrow-band imaging with magnification in Barrett’s esophagus: validation of a simplified grading system of mucosal morphology patterns against histology , 2008, Endoscopy.

[23]  Joni-Kristian Kämäräinen,et al.  Invariance properties of Gabor filter-based features-overview and applications , 2006, IEEE Transactions on Image Processing.

[24]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[25]  大恵 俊一郎,et al.  拡張Local Binary Patternを用いたテクスチャー分割 , 2000 .

[26]  Srinivasan Ramakrishnan,et al.  SVD-Based Modeling for Image Texture Classification Using Wavelet Transformation , 2007, IEEE Transactions on Image Processing.

[27]  Kai-Kuang Ma,et al.  Rotation-invariant and scale-invariant Gabor features for texture image retrieval , 2007, Image Vis. Comput..

[28]  B. S. Manjunath,et al.  A texture descriptor for browsing and similarity retrieval , 2000, Signal Process. Image Commun..

[29]  Arivazhagan Selvaraj,et al.  Texture classification using wavelet transform , 2003, Pattern Recognit. Lett..

[30]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  J. Macgregor,et al.  Image texture analysis: methods and comparisons , 2004 .

[32]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[33]  E. Romero,et al.  Rotation invariant texture characterization using a curvelet based descriptor , 2011, Pattern Recognit. Lett..

[34]  Qionghai Dai,et al.  Similarity-based online feature selection in content-based image retrieval , 2006, IEEE Transactions on Image Processing.