Deciding whether the ordering is necessary in a Presburger formula
暂无分享,去创建一个
[1] L. M. Milne-Thomson,et al. Grundlagen der Mathematik , 1935, Nature.
[2] Arne Storjohann,et al. Near optimal algorithms for computing Smith normal forms of integer matrices , 1996, ISSAC '96.
[3] S. Ginsburg,et al. BOUNDED ALGOL-LIKE LANGUAGES^) , 1964 .
[4] Manolis Koubarakis,et al. Complexity Results for First-Order Theories of Temporal Constraints , 1994, KR.
[5] Christian Choffrut,et al. Theoretical Informatics and Applications Deciding Whether a Relation Defined in Presburger Logic Can Be Defined in Weaker Logics , 2022 .
[6] Thiet-Dung Huynh. The Complexity of Semilinear Sets , 1982, J. Inf. Process. Cybern..
[7] Seymour Ginsburg,et al. AFL with the Semilinear Property , 1971, J. Comput. Syst. Sci..
[8] R. Stansifer. Presburger''s Article on Integer Arithmetic: Remarks and Translation , 1984 .
[9] Andrej Muchnik. The definable criterion for definability in Presburger arithmetic and its applications , 2003, Theor. Comput. Sci..
[10] Herbert B. Enderton,et al. A mathematical introduction to logic , 1972 .
[11] M. Schützenberger,et al. Rational sets in commutative monoids , 1969 .
[12] Christian Choffrut,et al. Definable sets in weak Presburger arithmetic , 2007, ICTCS.
[13] Véronique Bruyère,et al. Durations, Parametric Model-Checking in Timed Automata with Presburger Arithmetic , 2003, STACS.
[14] A. Kasher. Review: Seymour Ginsburg, Edwin H. Spanier, Semigroups, Presburger Formulas, and Languages , 1969 .
[15] Jérôme Leroux,et al. A polynomial time Presburger criterion and synthesis for number decision diagrams , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).
[16] S. Ginsburg,et al. Semigroups, Presburger formulas, and languages. , 1966 .
[17] Ryuichi Ito. Every Semilinear Set is a Finite Union of Disjoint Linear Sets , 1969, J. Comput. Syst. Sci..
[18] Seymour Ginsburg,et al. BOUNDED REGULAR SETS , 1966 .
[19] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.