Deciding whether the ordering is necessary in a Presburger formula

We characterize the relations which are first-order definable in the model of the group of integers with the constant 1. This allows us to show that given a relation defined by a first-order formula in this model enriched with the usual ordering, it is recursively decidable whether or not it is first-order definable without the ordering.

[1]  L. M. Milne-Thomson,et al.  Grundlagen der Mathematik , 1935, Nature.

[2]  Arne Storjohann,et al.  Near optimal algorithms for computing Smith normal forms of integer matrices , 1996, ISSAC '96.

[3]  S. Ginsburg,et al.  BOUNDED ALGOL-LIKE LANGUAGES^) , 1964 .

[4]  Manolis Koubarakis,et al.  Complexity Results for First-Order Theories of Temporal Constraints , 1994, KR.

[5]  Christian Choffrut,et al.  Theoretical Informatics and Applications Deciding Whether a Relation Defined in Presburger Logic Can Be Defined in Weaker Logics , 2022 .

[6]  Thiet-Dung Huynh The Complexity of Semilinear Sets , 1982, J. Inf. Process. Cybern..

[7]  Seymour Ginsburg,et al.  AFL with the Semilinear Property , 1971, J. Comput. Syst. Sci..

[8]  R. Stansifer Presburger''s Article on Integer Arithmetic: Remarks and Translation , 1984 .

[9]  Andrej Muchnik The definable criterion for definability in Presburger arithmetic and its applications , 2003, Theor. Comput. Sci..

[10]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .

[11]  M. Schützenberger,et al.  Rational sets in commutative monoids , 1969 .

[12]  Christian Choffrut,et al.  Definable sets in weak Presburger arithmetic , 2007, ICTCS.

[13]  Véronique Bruyère,et al.  Durations, Parametric Model-Checking in Timed Automata with Presburger Arithmetic , 2003, STACS.

[14]  A. Kasher Review: Seymour Ginsburg, Edwin H. Spanier, Semigroups, Presburger Formulas, and Languages , 1969 .

[15]  Jérôme Leroux,et al.  A polynomial time Presburger criterion and synthesis for number decision diagrams , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[16]  S. Ginsburg,et al.  Semigroups, Presburger formulas, and languages. , 1966 .

[17]  Ryuichi Ito Every Semilinear Set is a Finite Union of Disjoint Linear Sets , 1969, J. Comput. Syst. Sci..

[18]  Seymour Ginsburg,et al.  BOUNDED REGULAR SETS , 1966 .

[19]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.