On the origin of divergence errors in MHD simulations and consequences for numerical schemes
暂无分享,去创建一个
[1] F. Kemm. A comparative study of TVD‐limiters—well‐known limiters and an introduction of new ones , 2011 .
[2] G. Tóth. The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .
[3] B. M. Marder,et al. A method for incorporating Gauss' lasw into electromagnetic pic codes , 1987 .
[4] Claus-Dieter Munz,et al. A Finite-Volume Method for the Maxwell Equations in the Time Domain , 2000, SIAM J. Sci. Comput..
[5] Phillip Colella,et al. A Higher-Order Godunov Method for Multidimensional Ideal Magnetohydrodynamics , 1994, SIAM J. Sci. Comput..
[7] Eitan Tadmor,et al. Nonoscillatory Central Schemes for One- and Two-Dimensional Magnetohydrodynamics Equations. II: High-Order SemiDiscrete Schemes , 2006, SIAM J. Sci. Comput..
[8] Claus-Dieter Munz,et al. Divergence Correction Techniques for Maxwell Solvers Based on a Hyperbolic Model , 2000 .
[9] D. Balsara,et al. A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .
[10] C. Angelopoulos. High resolution schemes for hyperbolic conservation laws , 1992 .
[11] Ami Harten,et al. Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .
[12] Constantine M. Dafermos. Quasilinear Hyperbolic Systems with Involutions , 1986 .
[13] E. Tadmor,et al. Constraint preserving schemes using potential-based fluxes. III. Genuinely multi-dimensional schemes for MHD equations , 2012 .
[14] James A. Rossmanith,et al. An Unstaggered, High-Resolution Constrained Transport Method for Magnetohydrodynamic Flows , 2006, SIAM J. Sci. Comput..
[15] K. Waagan,et al. A positive MUSCL-Hancock scheme for ideal magnetohydrodynamics , 2009, J. Comput. Phys..
[16] Dinshaw Balsara,et al. Divergence-free adaptive mesh refinement for Magnetohydrodynamics , 2001 .
[17] Hans d,et al. Multi-dimensional upwind constrained transport on unstructured grids for 'shallow water' magnetohydrodynamics , 2001 .
[18] D. Kröner,et al. Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system , 2005 .
[19] N. Risebro,et al. STABLE UPWIND SCHEMES FOR THE MAGNETIC INDUCTION EQUATION , 2009 .
[20] R. I. Klein,et al. An unsplit, cell-centered Godunov method for ideal MHD , 2005 .
[21] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[22] E. Tadmor,et al. Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .
[23] Philip L. Roe,et al. An upwind scheme for magnetohydrodynamics , 1995 .
[24] P. Lax,et al. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .
[25] C. Dafermos. Hyberbolic Conservation Laws in Continuum Physics , 2000 .
[26] Friedemann Kemm,et al. A Carbuncle Free Roe-Type Solver for the Euler Equations , 2008 .
[27] S. Mishra,et al. Splitting based finite volume schemes for ideal MHD equations , 2009, J. Comput. Phys..
[28] J. Hawley,et al. Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .
[29] Claus-Dieter Munz,et al. Maxwell's equations when the charge conservation is not satisfied , 1999 .
[30] Bernd Einfeld. On Godunov-type methods for gas dynamics , 1988 .
[31] Eitan Tadmor,et al. Hyperbolic Problems: Theory, Numerics and Applications , 2009 .
[32] Manuel Torrilhon. Zur Numerik der idealen Magnetohydrodynamik , 2004 .
[33] P. Roe,et al. A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .
[34] Manuel Torrilhon,et al. Locally Divergence-preserving Upwind Finite Volume Schemes for Magnetohydrodynamic Equations , 2005, SIAM J. Sci. Comput..
[35] Eitan Tadmor,et al. Constraint Preserving Schemes Using Potential-Based Fluxes. II. Genuinely Multidimensional Systems of Conservation Laws , 2011, SIAM J. Numer. Anal..
[36] J. Brackbill,et al. The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .
[37] C. Munz,et al. Hyperbolic divergence cleaning for the MHD equations , 2002 .
[38] Peter A. Gilman,et al. Magnetohydrodynamic “Shallow Water” Equations for the Solar Tachocline , 2000 .
[39] Manuel Torrilhon,et al. Constraint-Preserving Upwind Methods for Multidimensional Advection Equations , 2004, SIAM J. Numer. Anal..
[40] M. Breuß. The correct use of the Lax–Friedrichs method , 2004 .