Two-level robust sequential covariance intersection fusion Kalman predictors over clustering sensor networks with uncertain noise variances

This paper studies the problem of designing two-level robust sequential covariance intersection SCI fusion Kalman predictors for the clustering sensor networks with noise variances uncertainties. The sensor networks consist of many clusters, which are partitioned by the nearest neighbour rule. According to the minimax robust estimation principle, based on the worst-case conservative clustering sensor network with the conservative upper bound of noise variances, the two-level SCI fusion Kalman predictors are presented where the first level is the local SCI fusion predictors and the second level is the global SCI fusion predictor. This two-level fused structure can significantly reduce the communicational burden and save the energy sources. The robustness of the local and fused Kalman predictors is proved based on the Lyapunov equation method, and the robust accuracy relations are proved. A simulation example verifies the correctness and effectiveness of the proposed robust SCI predictor.

[1]  Huijun Gao,et al.  A Parameter-Dependent Approach to Robust $H_{\infty }$ Filtering for Time-Delay Systems , 2008, IEEE Transactions on Automatic Control.

[2]  Fuwen Yang,et al.  Decentralized robust Kalman filtering for uncertain stochastic systems over heterogeneous sensor networks , 2008, Signal Process..

[3]  Jeffrey K. Uhlmann,et al.  General data fusion for estimates with unknown cross covariances , 1996, Defense, Security, and Sensing.

[4]  Lihua Xie,et al.  Design and analysis of discrete-time robust Kalman filters , 2002, Autom..

[5]  Wang Bao Robust Kalman Filtering for Uncertain Discrete-time Systems with Multiple Packet Dropouts , 2010 .

[6]  Cishen Zhang,et al.  Diffusion Kalman Filtering Based on Covariance Intersection , 2012, IEEE Transactions on Signal Processing.

[7]  Lihua Xie,et al.  A unified approach to linear estimation for discrete-time systems. II. H/sub /spl infin// estimation , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[8]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[9]  Zidong Wang,et al.  Robust filtering with stochastic nonlinearities and multiple missing measurements , 2009, Autom..

[10]  Li Yu,et al.  Distributed robust fusion Kalman filtering for uncertain stochastic systems with random delays and missing measurements , 2011, 2011 8th Asian Control Conference (ASCC).

[11]  Jeffrey K. Uhlmann,et al.  A non-divergent estimation algorithm in the presence of unknown correlations , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[12]  Jeffrey K. Uhlmann,et al.  General Decentralized Data Fusion With Covariance Intersection (CI) , 2001 .

[13]  Yuan Gao,et al.  The accuracy comparison of multisensor covariance intersection fuser and three weighting fusers , 2013, Inf. Fusion.

[14]  Shu-Li Sun,et al.  Multi-sensor optimal information fusion Kalman filter , 2004, Autom..

[15]  Yuan Gao,et al.  Sequential covariance intersection fusion Kalman filter , 2012, Inf. Sci..

[16]  Z. Luo,et al.  Finite horizon robust Kalman filter design , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[17]  Lihua Xie,et al.  Target tracking in wireless sensor networks using compressed Kalman filter , 2009, Int. J. Sens. Networks.

[18]  James Llinas,et al.  Multisensor Data Fusion , 1990 .

[19]  Uri Shaked,et al.  Robust discrete-time minimum-variance filtering , 1996, IEEE Trans. Signal Process..

[20]  Ali H. Sayed,et al.  Diffusion Strategies for Distributed Kalman Filtering and Smoothing , 2010, IEEE Transactions on Automatic Control.

[21]  Mohamed Darouach,et al.  State estimation in the presence of bounded disturbances , 2008, Autom..

[22]  Yang Xiao,et al.  Anomaly Detection Based Secure In-Network Aggregation for Wireless Sensor Networks , 2013, IEEE Systems Journal.

[23]  Y. Bar-Shalom,et al.  On optimal track-to-track fusion , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[24]  Yuan Gao,et al.  Reduced-order steady-state descriptor Kalman fuser weighted by block-diagonal matrices , 2008, Inf. Fusion.

[25]  Andrea Gasparri,et al.  An Interlaced Extended Kalman Filter for sensor networks localisation , 2009, Int. J. Sens. Networks.

[26]  Syama P. Chaudhuri,et al.  Multisensor data fusion for mine detection , 1990, Defense, Security, and Sensing.

[27]  Chuang Li,et al.  Multi-model information fusion Kalman filtering and white noise deconvolution , 2010, Inf. Fusion.

[28]  Zidong Wang,et al.  H∞ filtering for uncertain stochastic time-delay systems with sector-bounded nonlinearities , 2008, Autom..

[29]  Yonina C. Eldar,et al.  A Minimax Chebyshev Estimator for Bounded Error Estimation , 2008, IEEE Transactions on Signal Processing.

[30]  Huanshui Zhang,et al.  A unified approach to linear estimation for discrete-time systems. I. H/sub 2/ estimation , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[31]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[32]  Ming Zeng,et al.  Distributed weighted robust Kalman filter fusion for uncertain systems with autocorrelated and cross-correlated noises , 2013, Inf. Fusion.

[33]  Jie Zhou,et al.  The optimal robust finite-horizon Kalman filtering for multiple sensors with different stochastic failure rates , 2013, Appl. Math. Lett..

[34]  Ali H. Sayed,et al.  Linear Estimation (Information and System Sciences Series) , 2000 .

[35]  Chongzhao Han,et al.  Optimal linear estimation fusion .I. Unified fusion rules , 2003, IEEE Trans. Inf. Theory.

[36]  Z. Deng,et al.  Information fusion Wiener filter for the multisensor multichannel ARMA signals with time-delayed measurements , 2009 .

[37]  Jeffrey K. Uhlmann,et al.  Covariance consistency methods for fault-tolerant distributed data fusion , 2003, Inf. Fusion.

[38]  Jeffrey K. Uhlmann,et al.  Using covariance intersection for SLAM , 2007, Robotics Auton. Syst..

[39]  Yuan Gao,et al.  New approach to information fusion steady-state Kalman filtering , 2005, Autom..

[40]  Wen-an Zhang,et al.  Robust Information Fusion Estimator for Multiple Delay-Tolerant Sensors With Different Failure Rates , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[41]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .