Role of Zn on the rapid age-hardening in Mg-Ca-Zn alloys

[1]  K. Hono,et al.  Simultaneous achievement of high thermal conductivity, high strength and formability in Mg-Zn-Ca-Zr sheet alloy , 2020 .

[2]  T. Sasaki,et al.  A heat-treatable Mg–Al–Ca–Mn–Zn sheet alloy with good room temperature formability , 2017 .

[3]  N. Birbilis,et al.  Improving Formability of Mg–Ca–Zr Sheet Alloy by Microalloying of Zn   , 2016 .

[4]  P. Uggowitzer,et al.  Processing and microstructure–property relations of high-strength low-alloy (HSLA) Mg–Zn–Ca alloys , 2015 .

[5]  J. Banhart,et al.  Early stages of solute clustering in an Al-Mg-Si alloy , 2015 .

[6]  S. Ringer,et al.  Analysis of strengthening in AA6111 during the early stages of aging: atom probe tomography and yield stress modelling , 2013 .

[7]  E. Abe,et al.  Positron annihilation study of the Mg-Zn -Y alloys with long period stacking ordered (LPSO) structures , 2013 .

[8]  O. Melikhova,et al.  Natural aging of Mg–Gd and Mg–Tb alloys , 2012 .

[9]  Matthew D. H. Lay,et al.  Study of ageing in Al–Mg–Si alloys by positron annihilation spectroscopy , 2011, 1109.2019.

[10]  M. Mabuchi,et al.  Influence of Zn concentration on stretch formability at room temperature of Mg–Zn–Ce alloy , 2010 .

[11]  T. Ohkubo,et al.  Enhanced precipitation hardening of Mg–Ca alloy by Al addition , 2010 .

[12]  S. Ringer,et al.  Solute clustering in Al–Cu–Mg alloys during the early stages of elevated temperature ageing , 2010 .

[13]  J. Bohlen,et al.  Mechanical anisotropy and deep drawing behaviour of AZ31 and ZE10 magnesium alloy sheets , 2010 .

[14]  Kazuhiro Hono,et al.  Age-hardening response of Mg-0.3 at.%Ca alloys with different Zn contents , 2009 .

[15]  M. Monge,et al.  The precipitation process in Mg–Ca–(Zn) alloys investigated by positron annihilation spectroscopy , 2008 .

[16]  A. Somoza,et al.  Age‐hardening in a commercial Mg‐based alloy , 2007 .

[17]  Akira Takeuchi,et al.  Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element , 2005 .

[18]  J. Río,et al.  Study of Mg–Ca alloys by positron annihilation technique , 2005 .

[19]  A. Sato,et al.  Competitive Nucleation and Growth of {111} Ω with {001} GP Zones and θ′ in a Stress-Aged Al-Cu-Mg-Ag Alloy , 2004 .

[20]  Alfred Cerezo,et al.  Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050) , 2004 .

[21]  J. Río,et al.  Detection of Mg17Al12 precipitates in deformed thermal-aged AZ91 alloy by positron annihilation spectroscopy , 2004 .

[22]  D. Lloyd,et al.  Effect of composition on clustering reactions in AlMgSi(Cu) alloys , 2004 .

[23]  J. Parker,et al.  Metallurgy and processing of ultralow carbon bake hardening steels , 2002 .

[24]  S. Ringer,et al.  Origin of the initial rapid age hardening in an Al-1.7 at.% Mg-1.1 at.% Cu alloy , 1999 .

[25]  W. Wampler,et al.  A study of precipitate formation in aluminium-copper alloys by positron annihilation and transmission electron microscopy , 1980 .