A Survey of Topological Machine Learning Methods

The last decade saw an enormous boost in the field of computational topology: methods and concepts from algebraic and differential topology, formerly confined to the realm of pure mathematics, have demonstrated their utility in numerous areas such as computational biology personalised medicine, and time-dependent data analysis, to name a few. The newly-emerging domain comprising topology-based techniques is often referred to as topological data analysis (TDA). Next to their applications in the aforementioned areas, TDA methods have also proven to be effective in supporting, enhancing, and augmenting both classical machine learning and deep learning models. In this paper, we review the state of the art of a nascent field we refer to as “topological machine learning,” i.e., the successful symbiosis of topology-based methods and machine learning algorithms, such as deep neural networks. We identify common threads, current applications, and future challenges.

[1]  Karsten M. Borgwardt,et al.  Neural Persistence: A Complexity Measure for Deep Neural Networks Using Algebraic Topology , 2018, ICLR.

[2]  Rocío González-Díaz,et al.  Persistent entropy for separating topological features from noise in vietoris-rips complexes , 2017, Journal of Intelligent Information Systems.

[3]  Kenji Fukumizu,et al.  Kernel Method for Persistence Diagrams via Kernel Embedding and Weight Factor , 2017, J. Mach. Learn. Res..

[4]  Heather A. Harrington,et al.  Persistent homology of time-dependent functional networks constructed from coupled time series. , 2016, Chaos.

[5]  Mathieu Carrière,et al.  PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures , 2020, AISTATS.

[6]  Chao Chen,et al.  Persistence Enhanced Graph Neural Network , 2020, AISTATS.

[7]  Yuhei Umeda,et al.  Time Series Classification via Topological Data Analysis , 2017, Inf. Media Technol..

[8]  Andrew J. Blumberg,et al.  Robust Statistics, Hypothesis Testing, and Confidence Intervals for Persistent Homology on Metric Measure Spaces , 2012, Found. Comput. Math..

[9]  Yang Zou,et al.  Sliced Wasserstein Kernels for Probability Distributions , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  David Cohen-Steiner,et al.  Lipschitz Functions Have Lp-Stable Persistence , 2010, Found. Comput. Math..

[11]  S. Mitter,et al.  Testing the Manifold Hypothesis , 2013, 1310.0425.

[12]  Qi Zhao,et al.  Learning metrics for persistence-based summaries and applications for graph classification , 2019, NeurIPS.

[13]  Massimo Ferri,et al.  Comparing Persistence Diagrams Through Complex Vectors , 2015, ICIAP.

[14]  Steve Oudot,et al.  Eurographics Symposium on Geometry Processing 2015 Stable Topological Signatures for Points on 3d Shapes , 2022 .

[15]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[16]  Leslie Greengard,et al.  The Fast Gauss Transform , 1991, SIAM J. Sci. Comput..

[17]  Nils M. Kriege,et al.  A survey on graph kernels , 2019, Applied Network Science.

[18]  Andrew J. Blumberg,et al.  Multiparameter Persistence Image for Topological Machine Learning , 2020, NeurIPS.

[19]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[20]  Frédéric Chazal,et al.  Stochastic Convergence of Persistence Landscapes and Silhouettes , 2013, J. Comput. Geom..

[21]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[22]  Marc Niethammer,et al.  Graph Filtration Learning , 2019, ICML.

[23]  Henry Adams,et al.  Persistence Images: A Stable Vector Representation of Persistent Homology , 2015, J. Mach. Learn. Res..

[24]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[25]  Chao Chen,et al.  Diffusion runs low on persistence fast , 2011, 2011 International Conference on Computer Vision.

[26]  Larry Wasserman,et al.  PLLay: Efficient Topological Layer based on Persistent Landscapes , 2020, NeurIPS.

[27]  Primoz Skraba,et al.  Wasserstein Stability for Persistence Diagrams , 2020, 2006.16824.

[28]  Gershon Wolansky,et al.  Optimal Transport , 2021 .

[29]  Alberto Dassatti,et al.  giotto-tda: A Topological Data Analysis Toolkit for Machine Learning and Data Exploration , 2020, J. Mach. Learn. Res..

[30]  Marc Niethammer,et al.  Learning Representations of Persistence Barcodes , 2019, J. Mach. Learn. Res..

[31]  Karsten M. Borgwardt,et al.  Fast subtree kernels on graphs , 2009, NIPS.

[32]  Marc Niethammer,et al.  Connectivity-Optimized Representation Learning via Persistent Homology , 2019, ICML.

[33]  Stefano Ermon,et al.  Evaluating the Disentanglement of Deep Generative Models through Manifold Topology , 2020, ICLR.

[34]  Karthikeyan Natesan Ramamurthy,et al.  A Riemannian Framework for Statistical Analysis of Topological Persistence Diagrams , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[35]  Christian Bock,et al.  Uncovering the Topology of Time-Varying fMRI Data using Cubical Persistence , 2020, NeurIPS.

[36]  David Cohen-Steiner,et al.  Vines and vineyards by updating persistence in linear time , 2006, SCG '06.

[37]  Karsten M. Borgwardt,et al.  A Persistent Weisfeiler-Lehman Procedure for Graph Classification , 2019, ICML.

[38]  Ulrich Bauer,et al.  Statistical Topological Data Analysis - A Kernel Perspective , 2015, NIPS.

[39]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[40]  Kurt Mehlhorn,et al.  Weisfeiler-Lehman Graph Kernels , 2011, J. Mach. Learn. Res..

[41]  Alexander J. Smola,et al.  Deep Sets , 2017, 1703.06114.

[42]  Chao Chen,et al.  A Topological Regularizer for Classifiers via Persistent Homology , 2019, AISTATS.

[43]  David Cohen-Steiner,et al.  Extending Persistence Using Poincaré and Lefschetz Duality , 2009, Found. Comput. Math..

[44]  Rickard Brüel Gabrielsson,et al.  Exposition and Interpretation of the Topology of Neural Networks , 2018, 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA).

[45]  Heike Leitte,et al.  Topological Machine Learning with Persistence Indicator Functions , 2019, Mathematics and Visualization.

[46]  Revaz Valerianovich Gamkrelidze,et al.  Topology and Geometry , 1970 .

[47]  Valentin Khrulkov,et al.  Geometry Score: A Method For Comparing Generative Adversarial Networks , 2018, ICML.

[48]  Andreas Uhl,et al.  Deep Learning with Topological Signatures , 2017, NIPS.

[49]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[50]  Steve Oudot,et al.  Sliced Wasserstein Kernel for Persistence Diagrams , 2017, ICML.

[51]  Jose A. Perea,et al.  SW1PerS: Sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data , 2015, BMC Bioinformatics.

[52]  Karsten M. Borgwardt,et al.  Topological Autoencoders , 2019, ICML.

[53]  Mariette Yvinec,et al.  The Gudhi Library: Simplicial Complexes and Persistent Homology , 2014, ICMS.

[54]  Nicholas J. Cavanna,et al.  A Geometric Perspective on Sparse Filtrations , 2015, CCCG.

[55]  Lucas Lacasa,et al.  From time series to complex networks: The visibility graph , 2008, Proceedings of the National Academy of Sciences.

[56]  Ulrich Bauer,et al.  A stable multi-scale kernel for topological machine learning , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  F. Takens Detecting strange attractors in turbulence , 1981 .

[58]  R. Ho Algebraic Topology , 2022 .

[59]  Harald Oberhauser,et al.  Persistence Paths and Signature Features in Topological Data Analysis , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[60]  Don Sheehy,et al.  Linear-Size Approximations to the Vietoris–Rips Filtration , 2012, Discrete & Computational Geometry.

[61]  Dmitriy Morozov,et al.  Geometry Helps to Compare Persistence Diagrams , 2016, ALENEX.

[62]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[63]  Kush R. Varshney,et al.  Topological Data Analysis of Decision Boundaries with Application to Model Selection , 2019, ICML.