Bioleaching review part A:

Bioleaching of metal sulfides is caused by astonishingly diverse groups of bacteria. Today, at least 11 putative prokaryotic divisions can be related to this phenomenon. In contrast, the dissolution (bio)chemistry of metal sulfides follows only two pathways, which are determined by the acid-solubility of the sulfides: the thiosulfate and the polysulfide pathway. The bacterial cell can effect this sulfide dissolution by “contact” and “non-contact” mechanisms. The non-contact mechanism assumes that the bacteria oxidize only dissolved iron(II) ions to iron(III) ions. The latter can then attack metal sulfides and be reduced to iron(II) ions. The contact mechanism requires attachment of bacteria to the sulfide surface. The primary mechanism for attachment to pyrite is electrostatic in nature. In the case of Acidithiobacillus ferrooxidans, bacterial exopolymers contain iron(III) ions, each complexed by two uronic acid residues. The resulting positive charge allows attachment to the negatively charged pyrite. Thus, the first function of complexed iron(III) ions in the contact mechanism is mediation of cell attachment, while their second function is oxidative dissolution of the metal sulfide, similar to the role of free iron(III) ions in the non-contact mechanism. In both cases, the electrons extracted from the metal sulfide reduce molecular oxygen via a complex redox chain located below the outer membrane, the periplasmic space, and the cytoplasmic membrane of leaching bacteria. The dominance of either At. ferrooxidans or Leptospirillum ferrooxidans in mesophilic leaching habitats is highly likely to result from differences in their biochemical iron(II) oxidation pathways, especially the involvement of rusticyanin.

[1]  O. Tuovinen,et al.  Sorption of Thiobacillus ferrooxidans to particulate material. , 1983, Biotechnology and bioengineering.

[2]  P. Bos,et al.  Anaerobic Growth of Thiobacillus ferrooxidans , 1992, Applied and environmental microbiology.

[3]  A. Stuchebrukhov,et al.  DNA repair mechanism by photolyase: electron transfer path from the photolyase catalytic cofactor FADH(-) to DNA thymine dimer. , 2001, Journal of theoretical biology.

[4]  Shrihari,et al.  Dissolution of particles of pyrite mineral by direct attachment of Thiobacillus ferrooxidans , 1995 .

[5]  D. Rawlings,et al.  Heavy metal mining using microbes. , 2002, Annual review of microbiology.

[6]  P. Norris,et al.  Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria. , 1996, Microbiology.

[7]  J. Pronk,et al.  Oxidation of reduced inorganic sulphur compounds by acidophilic thiobacilli. , 1990 .

[8]  S. Takaichi,et al.  Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria: its transfer to the genus Acidiphilium as Acidiphilium acidophilum comb. nov. , 1998, International journal of systematic bacteriology.

[9]  Molecular aspects of the electron transfer system which participates in the oxidation of ferrous ion by Thiobacillus ferrooxidans. , 1995, FEMS microbiology reviews.

[10]  J. Banfield,et al.  An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. , 2000, Science.

[11]  R. Blake,et al.  Enzymes of aerobic respiration on iron. , 1993, FEMS microbiology reviews.

[12]  G. Olson,et al.  Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. , 2003, Applied microbiology and biotechnology.

[13]  M. Sampson,et al.  Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides , 2000 .

[14]  A. Hiraishi,et al.  Acidisphaera rubrifaciens gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium isolated from acidic environments. , 2000, International journal of systematic and evolutionary microbiology.

[15]  Y. Fukumori,et al.  Cytochrome oxidase of an acidophilic iron-oxidizing bacterium, Thiobacillus ferrooxidans, functions at pH 3.5. , 1989, Biochemical and Biophysical Research Communications - BBRC.

[16]  W. Sand,et al.  (Bio)chemistry of bacterial leaching - direct vs. indirect bioleaching , 2001 .

[17]  W. Sand,et al.  Bacterial Leaching of Metal Sulfides Proceeds by Two Indirect Mechanisms via Thiosulfate or via Polysulfides and Sulfur , 1999, Applied and Environmental Microbiology.

[18]  J. Banfield,et al.  Phylogeny of Microorganisms Populating a Thick, Subaerial, Predominantly Lithotrophic Biofilm at an Extreme Acid Mine Drainage Site , 2000, Applied and Environmental Microbiology.

[19]  D. Kelly,et al.  Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. , 2000, International journal of systematic and evolutionary microbiology.

[20]  K. Stetter,et al.  16S rDNA-based Phylogeny of the Archaeal Order Sulfolobales and Reclassification of Desulfurolobus a , 1996 .

[21]  A. Rutenberg,et al.  Microbial response to surface microtopography: the role of metabolism in localized mineral dissolution , 2001 .

[22]  J. Banfield,et al.  Microbial oxidation of pyrite: Experiments using microorganisms from an extreme acidic environment , 1998 .

[23]  D. Kirchman,et al.  Attachment Stimulates Exopolysaccharide Synthesis by a Bacterium , 1993, Applied and environmental microbiology.

[24]  G. Brasseur,et al.  Cytochromes c of Acidithiobacillus ferrooxidans. , 2002, FEMS microbiology letters.

[25]  P. Singer,et al.  Acidic Mine Drainage: The Rate-Determining Step , 1970, Science.

[26]  J. Banfield,et al.  Comparison of Acid Mine Drainage Microbial Communities in Physically and Geochemically Distinct Ecosystems , 2000, Applied and Environmental Microbiology.

[27]  J. Banfield,et al.  Geomicrobiology of Pyrite (FeS2) Dissolution: Case Study at Iron Mountain, California , 1999 .

[28]  P. Norris,et al.  Respiratory chain components of iron-oxidizing acidophilic bacteria , 1990 .

[29]  Banfield,et al.  Distribution of thiobacillus ferrooxidans and leptospirillum ferrooxidans: implications for generation of acid mine drainage , 1998, Science.

[30]  W. Achouak,et al.  Enzyme-Linked Immunofiltration Assay To Estimate Attachment of Thiobacilli to Pyrite , 1998, Applied and Environmental Microbiology.

[31]  G. Luther Pyrite oxidation and reduction - Molecular orbital theory considerations. [for geochemical redox processes] , 1987 .

[32]  P. Holmes,et al.  Mechanism of Pyrite Dissolution in the Presence ofThiobacillus ferrooxidans , 1999, Applied and Environmental Microbiology.

[33]  R. Steudel Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes , 1996 .

[34]  K B Hallberg,et al.  Biodiversity of acidophilic prokaryotes. , 2001, Advances in applied microbiology.

[35]  W. Ingledew,et al.  A potentiometric and kinetic study on the respiratory chain of ferrous-iron-grown Thiobacillus ferrooxidans. , 1980, Biochimica et biophysica acta.

[36]  W. Sand,et al.  Sulfur chemistry in bacterial leaching of pyrite , 1996, Applied and environmental microbiology.

[37]  H. Toledo,et al.  Chemotaxis of Leptospirillum ferrooxidans and other acidophilic chemolithotrophs: comparison with the Escherichia coli chemosensory system. , 1992, FEMS microbiology letters.

[38]  H. Hippe Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992). , 2000, International journal of systematic and evolutionary microbiology.

[39]  F. Guerlesquin,et al.  Interaction-induced Redox Switch in the Electron Transfer Complex Rusticyanin-Cytochrome c 4 * , 1999, The Journal of Biological Chemistry.

[40]  T. Vargas,et al.  Novel electrochemical-enzymatic model which quantifies the effect of the solution Eh on the kinetics of ferrous iron oxidation with Acidithiobacillus ferrooxidans. , 2002, Biotechnology and bioengineering.

[41]  A. Myerson,et al.  The adsorption of Thiobacillus ferrooxidans on coal surfaces , 1986, Biotechnology and bioengineering.

[42]  D. Nordstrom,et al.  Initiation of aqueous pyrite oxidation by dissolved oxygen and by ferric iron , 1987 .

[43]  W. Sand,et al.  Sulfur chemistry, biofilm, and the (in)direct attack mechanism — a critical evaluation of bacterial leaching , 1995, Applied Microbiology and Biotechnology.

[44]  W. Sand,et al.  The EPS of Acidithiobacillus ferrooxidans--a model for structure-function relationships of attached bacteria and their physiology. , 2001, Water science and technology : a journal of the International Association on Water Pollution Research.

[45]  N. Kurosawa,et al.  Sulfurisphaera ohwakuensis gen. nov., sp. nov., a novel extremely thermophilic acidophile of the order Sulfolobales. , 1998, International journal of systematic bacteriology.

[46]  Jillian F Banfield,et al.  Microbial communities in acid mine drainage. , 2003, FEMS microbiology ecology.

[47]  C. Mustin,et al.  Surface sulphur as promoting agent of pyrite leaching by Thiobacillus ferrooxidans , 1993 .

[48]  M. Boon,et al.  The Mechanism and Kinetics of Bioleaching Sulphide Minerals , 1998 .

[49]  D. Rawlings,et al.  Molecular Relationship between Two Groups of the Genus Leptospirillum and the Finding that Leptospirillum ferriphilum sp. nov. Dominates South African Commercial Biooxidation Tanks That Operate at 40°C , 2002, Applied and Environmental Microbiology.

[50]  N. Ohmura,et al.  Selective Adhesion of Thiobacillus ferrooxidans to Pyrite , 1993, Applied and environmental microbiology.

[51]  Violaine Bonnefoy,et al.  Characterization of an Operon Encoding Two c-Type Cytochromes, an aa3-Type Cytochrome Oxidase, and Rusticyanin in Thiobacillus ferrooxidansATCC 33020 , 1999, Applied and Environmental Microbiology.

[52]  D. Johnson,et al.  Heterotrophic Acidophiles and Their Roles in the Bioleaching of Sulfide Minerals , 1997 .

[53]  Robert M. Smith,et al.  NIST Critically Selected Stability Constants of Metal Complexes Database , 2004 .

[54]  R. Amils,et al.  Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties , 1999 .

[55]  D. Johnson,et al.  Biodiversity and ecology of acidophilic microorganisms , 1998 .

[56]  F. Crundwell,et al.  Leaching of Zinc Sulfide by Thiobacillus ferrooxidans: Bacterial Oxidation of the Sulfur Product Layer Increases the Rate of Zinc Sulfide Dissolution at High Concentrations of Ferrous Ions , 1999, Applied and Environmental Microbiology.

[57]  F. Crundwell,et al.  Leaching of Zinc Sulfide by Thiobacillus ferrooxidans: Experiments with a Controlled Redox Potential Indicate No Direct Bacterial Mechanism , 1998, Applied and Environmental Microbiology.

[58]  A. P. Harrison,et al.  Respiratory components in acidophilic bacteria that respire on iron , 1992 .

[59]  H. Tributsch,et al.  Morphology of bacterial leaching patterns by Thiobacillus ferrooxidans on synthetic pyrite , 1988, Archives of Microbiology.

[60]  O. Tuovinen,et al.  Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks , 2002 .

[61]  W. Sand,et al.  The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. , 2003, Microbiology.

[62]  W. Sand,et al.  Physiological characteristics of thiobacillus ferrooxidans and leptospirillum ferrooxidans and physicochemical factors influence microbial metal leaching , 1992 .

[63]  J. Rubio,et al.  Interfacial phenomena affecting the adhesion of Thiobacillus ferrooxidans to sulphide mineral surface , 1992 .

[64]  W. Sand,et al.  Evaluation of Leptospirillum ferrooxidans for Leaching , 1992, Applied and environmental microbiology.

[65]  P. Norris,et al.  Acidophiles in bioreactor mineral processing , 2000, Extremophiles.

[66]  G. Andrews The selective adsorption of Thiobacilli to dislocation sites on pyrite surfaces. , 1988, Biotechnology and bioengineering.

[67]  J. Rimstidt,et al.  Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism , 2003 .

[68]  H. Tributsch,et al.  Reasons why 'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. , 1999, Microbiology.

[69]  R. Blake,et al.  Solubilization of Minerals by Bacteria: Electrophoretic Mobility of Thiobacillus ferrooxidans in the Presence of Iron, Pyrite, and Sulfur , 1994, Applied and environmental microbiology.

[70]  W. Sand,et al.  Importance of Extracellular Polymeric Substances from Thiobacillus ferrooxidans for Bioleaching , 1998, Applied and Environmental Microbiology.

[71]  K. Lund,et al.  The High-Molecular-Weight Cytochrome c Cyc2 of Acidithiobacillus ferrooxidans Is an Outer Membrane Protein , 2002, Journal of bacteriology.

[72]  G. S. Hansford Recent Developments in Modeling the Kinetics of Bioleaching , 1997 .

[73]  K. Bosecker,et al.  Bioleaching: metal solubilization by microorganisms , 1997 .

[74]  Y. Fukumori,et al.  The Electron Transfer System in an Acidophilic Iron-Oxidizing Bacterium , 1991 .

[75]  W. Sand,et al.  Intermediary sulfur compounds in pyrite oxidation: implications for bioleaching and biodepyritization of coal , 1999, Applied Microbiology and Biotechnology.

[76]  P. Norris,et al.  Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. , 1996, Microbiology.

[77]  Amitabha Das,et al.  Anaerobic growth on elemental sulfur using dissimilar iron reduction by autotrophic Thiobacillus ferrooxidans , 1992 .

[78]  K. Stetter,et al.  Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic Archaeum, isolated from a uranium mine in Germany , 1995 .

[79]  H. Saiki,et al.  Anaerobic Respiration Using Fe3+, S0, and H2 in the Chemolithoautotrophic Bacterium Acidithiobacillus ferrooxidans , 2002, Journal of bacteriology.

[80]  D. Boxer,et al.  The purification and some properties of rusticyanin, a blue copper protein involved in iron(II) oxidation from Thiobacillus ferro-oxidans. , 1978, The Biochemical journal.

[81]  W. Babel,et al.  Microbial diversity in an in situ reactor system treating monochlorobenzene contaminated groundwater as revealed by 16S ribosomal DNA analysis. , 2002, Systematic and applied microbiology.

[82]  K. Timmis,et al.  Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. , 2000, International journal of systematic and evolutionary microbiology.

[83]  A. Hiraishi,et al.  Aerobic anoxygenic photosynthetic bacteria with zinc-bacteriochlorophyll. , 2001, The Journal of general and applied microbiology.