High-Throughput Computation of Thermal Conductivity of High-Temperature Solid Phases: The Case of Oxide and Fluoride Perovskites

Manufacturing materials with tailorable characteristics requires a detailed understanding of their properties as a function of temperature. A study of the mechanical stability and thermal conductivity of several hundred oxides and fluorides at temperatures up to 1000 K is presented.

[1]  A. Mackay The Unit Cell and Space-Group of Alamosite (PbSiO3) , 1952 .

[2]  B. Bouhafs,et al.  The electronic structure of CuCl , 2001 .

[3]  B. Hennion,et al.  Low energy phonon dispersion curves of KZnF3 and CsCaF3 , 1981 .

[4]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[5]  M. A. Novikov,et al.  Direct cupration of fluoroform. , 2011, Journal of the American Chemical Society.

[6]  S. Hull,et al.  Superionic phases in the (PbF2)1-x-(MF)x, M = K, Rb and Cs, systems , 1999 .

[7]  S. Tsuneyuki,et al.  Self-consistent phonon calculations of lattice dynamical properties in cubic SrTiO 3 with first-principles anharmonic force constants , 2015, 1506.01781.

[8]  Igor A. Abrikosov,et al.  Temperature-dependent effective third-order interatomic force constants from first principles , 2013, 1308.5436.

[9]  Linus Pauling,et al.  THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS , 1932 .

[10]  G. Ozin,et al.  Structure and bonding of H3CCuH , 1983 .

[11]  Glass-like thermal conductivity in SrTiO3 thermoelectrics induced by A-site vacancies , 2014, 1411.0410.

[12]  Gang Chen,et al.  Applied Physics Reviews Nanoscale Thermal Transport. Ii. 2003–2012 , 2022 .

[13]  S. Mishra,et al.  Phase stability and structural temperature dependence in sodium niobate: A high-resolution powder neutron diffraction study , 2010, 1011.4410.

[14]  A. Welch,et al.  Reactions between metal oxides and fluorides: some new double-fluoride structures of type ABF3 , 1952 .

[15]  A. Koleżyński,et al.  From the Molecular Picture to the Band Structure of Cubic and Tetragonal Barium Titanate , 2005 .

[16]  A. Kania,et al.  Phase transitions in AgTaO3 single crystals , 1981 .

[17]  D. Keszler,et al.  Hydrothermal dehydration of precipitates: convenient synthesis method for solids. , 2001, Inorganic chemistry.

[18]  A. Correspondent Phonon scattering in solids , 1975, Nature.

[19]  Gerbrand Ceder,et al.  Screening for high-performance piezoelectrics using high-throughput density functional theory , 2011 .

[20]  H. Mao,et al.  A new cubic perovskite in PbGeO3 at high pressures , 2012 .

[21]  K. Chapman,et al.  Pronounced Negative Thermal Expansion from a Simple Structure: Cubic ScF3. , 2011 .

[22]  R. Poole,et al.  Electronic band structure of the alkali halides. I. Experimental parameters , 1975 .

[23]  A. Okazaki,et al.  The Crystal Structures of KMnF 3 , KFeF 3 , KCoF 3 , KNiF 3 and KCuF 3 above and below their Néel Temperatures , 1961 .

[24]  H. Ikawa,et al.  Thermal Conductivity of KMnF_3, KCoF_3, KNiF_3, and KZnF_3 Single Crystals , 1964 .

[25]  M. Mortier,et al.  Experimental and theoretical study of second-order Raman scattering in BaLiF3 , 1994 .

[26]  First-principles theory of anharmonicity and the inverse isotope effect in superconducting palladium-hydride compounds. , 2013, Physical review letters.

[27]  Toulouse,et al.  Raman-scattering investigation of the hexagonal perovskite RbZnF3. , 1995, Physical review. B, Condensed matter.

[28]  R. Angel,et al.  General rules for predicting phase transitions in perovskites due to octahedral tilting. , 2005, Physical review letters.

[29]  Marco Buongiorno Nardelli,et al.  The AFLOW standard for high-throughput materials science calculations , 2015, 1506.00303.

[30]  G. A. Slack,et al.  Pressure and temperature effects on the thermal conductivity of CuCl , 1982 .

[31]  E. Grüneisen,et al.  Theorie des festen Zustandes einatomiger Elemente , 1912 .

[32]  S. I. Simak,et al.  Lattice dynamics of anharmonic solids from first principles , 2011, 1103.5590.

[33]  Jing Liu,et al.  Cubic perovskite polymorph of strontium metasilicate at high pressures , 2013 .

[34]  S. Curtarolo,et al.  AFLOW: An automatic framework for high-throughput materials discovery , 2012, 1308.5715.

[35]  C. Howard Structures and phase transitions in perovskites--a group-theoretical approach. , 2005, Acta Crystallographica Section A Foundations of Crystallography.

[36]  M I Katsnelson,et al.  Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory. , 2008, Physical review letters.

[37]  J. Martín Thermal Conductivity of RbCaF3 , 1976 .

[38]  S. Yamanaka,et al.  Thermal and mechanical properties of perovskite-type barium hafnate , 2006 .

[39]  Tetsushi Matsuda,et al.  Thermophysical properties of SrHfO3 and SrRuO3 , 2004 .

[40]  Gerbrand Ceder,et al.  High-throughput screening of perovskite alloys for piezoelectric performance and thermodynamic stability , 2013, 1309.1727.

[41]  C. Howard,et al.  Powder neutron diffraction study of the high temperature phase transitions in NaTaO3 , 1999 .

[42]  S. Yamanaka,et al.  Heat capacities and thermal conductivities of perovskite type BaZrO3 and BaCeO3 , 2003 .

[43]  Koji Yamada,et al.  Mechanochemical synthesis and order–disorder phase transition in fluoride ion conductor RbPbF3 , 2008 .

[44]  S. Yamanaka,et al.  Thermoelectric properties of reduced and La-doped single-crystalline SrTiO3 , 2005 .

[45]  Mark Voorneveld,et al.  Preparation , 2018, Games Econ. Behav..

[46]  J. Longo,et al.  The effect of pressure and B-cation size on the crystal structure of CsBF3 compounds (B=Mn, Fe, Co, Ni, Zn, Mg) , 1969 .

[47]  Jessica Schulze,et al.  The Nature Of The Chemical Bond , 2016 .

[48]  Paul G. Klemens,et al.  Lattice thermal conductivity of minerals at high temperatures , 1974 .

[49]  H. Thomas,et al.  Structural Phase Transitions in Perovskite-Type Crystals , 1968 .

[50]  Y. Ohishi,et al.  Rhombohedral (9R) and hexagonal (6H) perovskites in barium silicates under high pressure , 2007 .

[51]  Thomas Olsen,et al.  Computational screening of perovskite metal oxides for optimal solar light capture , 2012 .

[52]  D. G. Pettifor,et al.  A chemical scale for crystal-structure maps , 1984 .

[53]  M. Tachibana,et al.  Thermal conductivity of perovskite ferroelectrics , 2008 .

[54]  S. Yamashita,et al.  Structural phase transitions in KCdF3 and K0.5Rb0.5CdF3 , 1990 .

[55]  H. Takeuchi,et al.  An electron paramagnetic resonance study of Fe3+ centres in Tl2MgF4 and Tl2ZnF4 crystals , 2006 .

[56]  J. Dec,et al.  On the Pb thermal vibrations in PbHfO3 crystals , 1994 .

[57]  E. F. Osborn,et al.  Fluoride Model Systems: III, The System NaF–BeF2 and the Polymorphism of Na2BeF4 and BeF2 , 1953 .

[58]  M. Wildner,et al.  Crystal structures of SrSeO 3 and CaSeO 3 and their respective relationships with molybdomenite- and monazite-type compounds – an example for stereochemical equivalence of E SeO 3 groups ( E = lone electron pair) with tetrahedral TO 4 groups , 2007 .

[59]  Stefano Curtarolo,et al.  Finding Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials Modeling , 2014, 1401.2439.

[60]  V. Lemanov,et al.  Specific heat and heat conductivity of BaTiO3 polycrystalline films in the thickness range 20–1100 nm , 2002 .

[61]  Natalio Mingo,et al.  Lattice thermal conductivity of silicon from empirical interatomic potentials , 2005 .

[62]  Ankita Katre,et al.  Calculating the thermal conductivity of the silicon clathrates using the quasi‐harmonic approximation , 2016 .

[63]  J. Gesland,et al.  The 193 K phase transition in RbCaF3 , 1976 .

[64]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[65]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[66]  Wu Li,et al.  ShengBTE: A solver of the Boltzmann transport equation for phonons , 2014, Comput. Phys. Commun..

[67]  K. Knight,et al.  Thermal expansion and atomic displacement parameters of cubic KMgF3 perovskite determined by high-resolution neutron powder diffraction , 2002 .

[68]  Roger H. French,et al.  Bulk electronic structure of SrTiO3: Experiment and theory , 2001 .

[69]  Atsuto Seko,et al.  Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization. , 2015, Physical review letters.

[70]  T. Mcguire,et al.  Preparation and properties of ferrimagnets in the RbMgF3-RbCoF3 system , 1969 .

[71]  A. Lebedev Ferroelectric properties of RbNbO3 and RbTaO3 , 2015, 1501.00670.

[72]  Y. Ohishi,et al.  Phase transition in CaSiO3 perovskite , 2007 .

[73]  G. Madsen,et al.  Modeling the thermal conductivities of the zinc antimonides ZnSb and Zn4Sb3 , 2014 .

[74]  C. Catlow,et al.  The anion disorder in the perovskite fluoride KCaF3 , 2005 .

[75]  K. Esfarjani,et al.  Resonant bonding leads to low lattice thermal conductivity , 2014, Nature Communications.

[76]  R. Newnham,et al.  Dielectric Properties and Phase Transitions of NaNbO3 and (Na,K)NbO3 , 1954 .

[77]  R. Glaister,et al.  An Investigation of the Cubic-Hexagonal Transition in Barium Titanate , 1960 .

[78]  W. Cochran,et al.  Structure and dynamics of perovskite‐type crystals , 1968 .

[79]  S. Pettersson,et al.  Calculation of the thermal conductivity of alkali halide crystals , 1987 .

[80]  P. Halasyamani,et al.  Synthesis and characterization of ASnF3 (A=Na+, K+, Rb+, Cs+) , 2014 .

[81]  R. Peierls,et al.  Zur kinetischen Theorie der Wärmeleitung in Kristallen , 1929 .

[82]  Xunlei Ding,et al.  Activation of multiple C-H bonds promoted by gold in AuNbO(3)(+) clusters. , 2013, Angewandte Chemie.

[83]  Ambroise van Roekeghem,et al.  Anomalous thermal conductivity and suppression of negative thermal expansion in ScF3 , 2016, 1601.00561.

[84]  S. Yamanaka,et al.  Thermal and mechanical properties of polycrystalline BaSnO3 , 2006 .

[85]  B. Achar,et al.  Shell Model Calculation of Thermal Expansion of Alkali Halides and Magnesium Oxide , 1971 .

[86]  F. D. Leipziger,et al.  Preparation, Single Crystal Growth, and Crystallographic Properties of FeF2, RbFeF3, and CsFeF3 , 1966 .

[87]  A. Bouhemadou,et al.  Theoretical study of the structural, elastic, electronic and optical properties of XCaF3 (X = K and Rb) , 2015 .

[88]  M. Pawełczyk Phase transitions in AgTaxNb1−xO3 solid solutions , 1987 .

[89]  B. Chakoumakos,et al.  High-temperature phase transitions in SrHfO 3 , 1999 .

[90]  E. Suard,et al.  Structural investigation of AgNbO3 phases using X-ray and neutron diffraction , 2004 .

[91]  S. Curtarolo,et al.  Nanograined Half‐Heusler Semiconductors as Advanced Thermoelectrics: An Ab Initio High‐Throughput Statistical Study , 2014, 1408.5859.

[92]  A. Kania,et al.  On the phase transitions in silver niobate AgNbO3 , 1983 .

[93]  G. A. Slack,et al.  Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point , 1964 .

[94]  J. Gesland,et al.  Crystallographic, elastic, and Raman scattering investigations of structural phase transitions in RbCd F 3 and TlCd F 3 , 1975 .

[95]  K. Horai,et al.  Structural phase transitions in KCdF3 , 1977 .