Decomposed optimization time integrator for large-step elastodynamics

Simulation methods are rapidly advancing the accuracy, consistency and controllability of elastodynamic modeling and animation. Critical to these advances, we require efficient time step solvers that reliably solve all implicit time integration problems for elastica. While available time step solvers succeed admirably in some regimes, they become impractically slow, inaccurate, unstable, or even divergent in others --- as we show here. Towards addressing these needs we present the Decomposed Optimization Time Integrator (DOT), a new domain-decomposed optimization method for solving the per time step, nonlinear problems of implicit numerical time integration. DOT is especially suitable for large time step simulations of deformable bodies with nonlinear materials and high-speed dynamics. It is efficient, automated, and robust at large, fixed-size time steps, thus ensuring stable, continued progress of high-quality simulation output. Across a broad range of extreme and mild deformation dynamics, using frame-rate size time steps with widely varying object shapes and mesh resolutions, we show that DOT always converges to user-set tolerances, generally well-exceeding and always close to the best wall-clock times across all previous nonlinear time step solvers, irrespective of the deformation applied.

[1]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[2]  Victorita Dolean,et al.  An introduction to domain decomposition methods - algorithms, theory, and parallel implementation , 2015 .

[3]  Eftychios Sifakis,et al.  A scalable schur-complement fluids solver for heterogeneous compute platforms , 2016, ACM Trans. Graph..

[4]  J. Neuberger Steepest descent and differential equations , 1985 .

[5]  Hujun Bao,et al.  An efficient large deformation method using domain decomposition , 2006, Comput. Graph..

[6]  Daniele Panozzo,et al.  Decoupling simulation accuracy from mesh quality , 2018, ACM Trans. Graph..

[7]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[8]  Eftychios Sifakis,et al.  Computing the Singular Value Decomposition of 3x3 matrices with minimal branching and elementary floating point operations , 2011 .

[9]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[10]  Jack J. Dongarra,et al.  Fast Cholesky factorization on GPUs for batch and native modes in MAGMA , 2017, J. Comput. Sci..

[11]  M. Ortiz,et al.  The variational formulation of viscoplastic constitutive updates , 1999 .

[12]  Theodore Kim,et al.  Physics-Based Character Skinning Using Multidomain Subspace Deformations , 2012, IEEE Trans. Vis. Comput. Graph..

[13]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[14]  Alexey Stomakhin,et al.  Energetically consistent invertible elasticity , 2012, SCA '12.

[15]  Tiantian Liu,et al.  Quasi-newton methods for real-time simulation of hyperelastic materials , 2017, TOGS.

[16]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[17]  Eitan Grinspun,et al.  Example-based elastic materials , 2011, ACM Trans. Graph..

[18]  Jerrold E. Marsden,et al.  Geometric, variational integrators for computer animation , 2006, SCA '06.

[19]  J. Marsden,et al.  Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems , 2000 .

[20]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[21]  Stephen P. Boyd,et al.  Block splitting for distributed optimization , 2013, Mathematical Programming Computation.

[22]  Peter Schröder,et al.  A simple geometric model for elastic deformations , 2010, ACM Trans. Graph..

[23]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[24]  Theodore Kim,et al.  Physics-Based Character Skinning Using Multidomain Subspace Deformations , 2011, IEEE Transactions on Visualization and Computer Graphics.

[25]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[26]  Theodore Kim,et al.  Stable Neo-Hookean Flesh Simulation , 2018, ACM Trans. Graph..

[27]  Mark Pauly,et al.  Projective dynamics , 2014, ACM Trans. Graph..

[28]  Rahul Narain,et al.  ADMM ⊇ projective dynamics: fast simulation of general constitutive models , 2016, Symposium on Computer Animation.

[29]  Ronald Fedkiw,et al.  Robust quasistatic finite elements and flesh simulation , 2005, SCA '05.

[30]  Craig Schroeder,et al.  Optimization Integrator for Large Time Steps , 2014, IEEE Transactions on Visualization and Computer Graphics.

[31]  Ernst Hairer,et al.  Numerical methods for evolutionary differential equations , 2010, Math. Comput..

[32]  V. Shamanskii A modification of Newton's method , 1967 .

[33]  P. Deuflhard Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .

[34]  Xiao-Chuan Cai,et al.  Domain Decomposition Methods for Monotone Nonlinear Elliptic Problems , 1994 .

[35]  Jed Brown,et al.  LOW-RANK QUASI-NEWTON UPDATES FOR ROBUST JACOBIAN LAGGING IN NEWTON METHODS , 2013 .

[36]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Compressible Flows , 1999 .

[37]  P. Schröder,et al.  A simple geometric model for elastic deformations , 2010, SIGGRAPH 2010.

[38]  Jie Li,et al.  ADMM ⊇ Projective Dynamics: Fast Simulation of Hyperelastic Models with Dynamic Constraints , 2017, IEEE Trans. Vis. Comput. Graph..

[39]  Eitan Grinspun,et al.  Example-based elastic materials , 2011, ACM Trans. Graph..

[40]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Partial Differential Equations , 1999 .

[41]  Olga Sorkine-Hornung,et al.  Geometric optimization via composite majorization , 2017, ACM Trans. Graph..

[42]  Matthias Müller,et al.  XPBD: position-based simulation of compliant constrained dynamics , 2016, MIG.

[43]  Matthias Müller,et al.  Position based dynamics , 2007, J. Vis. Commun. Image Represent..

[44]  Matematik,et al.  Numerical Methods for Ordinary Differential Equations: Butcher/Numerical Methods , 2005 .

[45]  James F. O'Brien,et al.  Updated sparse cholesky factors for corotational elastodynamics , 2012, TOGS.

[46]  Alec Jacobson,et al.  Solid Geometry Processing on Deconstructed Domains , 2018, Comput. Graph. Forum.

[47]  James F. O'Brien,et al.  Fast simulation of mass-spring systems , 2013, ACM Trans. Graph..

[48]  Robert Bridson,et al.  Blended cured quasi-newton for distortion optimization , 2018, ACM Trans. Graph..