Integration of the Self-Organizing Map and Neural gas with Multidimensional Scaling
暂无分享,去创建一个
[1] Gintautas Dzemyda,et al. Conditions for Optimal Efficiency of Relative MDS , 2007, Informatica.
[2] Gintautas Dzemyda,et al. Optimal decisions in combining the SOM with nonlinear projection methods , 2006, Eur. J. Oper. Res..
[3] Olga Kurasova,et al. Quality of Quantization and Visualization of Vectors Obtained by Neural Gas and Self-Organizing Map , 2011, Informatica.
[4] Olga Kurasova,et al. Combination of Vector Quantization and Visualization , 2009, MLDM.
[5] Georges G. Grinstein,et al. A survey of visualizations for high-dimensional data mining , 2001 .
[6] P. Groenen,et al. Modern multidimensional scaling , 1996 .
[7] Julius Zilinskas. On Dimensionality of Embedding Space in Multidimensional Scaling , 2008, Informatica.
[8] Gintautas Dzemyda,et al. Dimension Reduction and Data Visualization Using Neural Networks , 2007, Emerging Artificial Intelligence Applications in Computer Engineering.
[9] Antanas Zilinskas,et al. Two level minimization in multidimensional scaling , 2007, J. Glob. Optim..
[10] Andrej Bugajev,et al. EFFICIENT VISUALIZATION BY USING PARAVIEW SOFTWARE ON BALTICGRID , 2010 .
[11] Teuvo Kohonen,et al. Self-Organizing Maps , 2010 .
[12] Gintautas Dzemyda,et al. Topology Preservation Measures in the Visualization of Manifold-Type Multidimensional Data , 2009, Informatica.
[13] Pablo A. Estévez,et al. Cross-entropy embedding of high-dimensional data using the neural gas model , 2005, Neural Networks.
[14] Olga Kurasova,et al. INVESTIGATION OF THE QUALITY OF MAPPING VECTORS OBTAINED BY QUANTIZATION METHODS , 2009 .
[15] Gintautas Dzemyda,et al. Heuristic approach for minimizing the projection error in the integrated mapping , 2006, Eur. J. Oper. Res..
[16] R. Mathar,et al. On global optimization in two-dimensional scaling , 1993 .