Using heteroskedasticity-consistent standard error estimators in OLS regression: An introduction and software implementation

[1]  A. Hayes,et al.  A New Test of Linear Hypotheses in OLS Regression Under Heteroscedasticity of Unknown Form , 2008 .

[2]  L. G. Godfrey,et al.  Tests for regression models with heteroskedasticity of unknown form , 2006, Comput. Stat. Data Anal..

[3]  Julia Kastner,et al.  Introduction to Robust Estimation and Hypothesis Testing , 2005 .

[4]  Francisco Cribari-Neto,et al.  Numerical evaluation of tests based on different heteroskedasticity-consistent covariance matrix estimators , 2005 .

[5]  Malik Beshir Malik,et al.  Applied Linear Regression , 2005, Technometrics.

[6]  Francisco Cribari-Neto,et al.  Asymptotic inference under heteroskedasticity of unknown form , 2004, Comput. Stat. Data Anal..

[7]  Leslie Godfrey,et al.  Controlling the finite sample significance levels of heteroskedasticity-robust tests of several linear restrictions on regression coefficients , 2004 .

[8]  Robert C MacCallum,et al.  2001 Presidential Address: Working with Imperfect Models , 2003, Multivariate behavioral research.

[9]  Anil K. Bera,et al.  On some heteroskedasticity-robust estimators of variance–covariance matrix of the least-squares estimators , 2002 .

[10]  R. Carroll,et al.  A Note on the Efficiency of Sandwich Covariance Matrix Estimation , 2001 .

[11]  Spyros G. Zarkos,et al.  Heteroskedasticity-consistent covariance matrix estimation:white's estimator and the bootstrap , 2001 .

[12]  Francisco Cribari-Neto,et al.  Improved heteroscedasticity‐consistent covariance matrix estimators , 2000 .

[13]  J. S. Long,et al.  Using Heteroscedasticity Consistent Standard Errors in the Linear Regression Model , 2000 .

[14]  J. Brian Gray,et al.  Applied Regression Including Computing and Graphics , 1999, Technometrics.

[15]  Jeffrey M. Wooldridge,et al.  Introductory Econometrics: A Modern Approach , 1999 .

[16]  A. Hayes Permutation test is not distribution-free: Testing H₀: ρ = 0. , 1996 .

[17]  Marilena Furno Small sample behavior of a robust heteroskedasticity consistent covariance matrix estimator , 1996 .

[18]  J. MacKinnon,et al.  Estimation and inference in econometrics , 1994 .

[19]  H. J. Arnold Introduction to the Practice of Statistics , 1990 .

[20]  J. L. Rasmussen Computer‐intensive correlational analysis: Bootstrap and approximate randomization techniques , 1989 .

[21]  D. Ruppert,et al.  Transformation and Weighting in Regression , 1988 .

[22]  S. Olejnik Variance Heterogeneity: An Outcome to Explain or a Nuisance Factor to Control , 1988 .

[23]  A. Chesher,et al.  The Bias of a Heteroskedasticity Consistent Covariance Matrix Estimator , 1987 .

[24]  H. White,et al.  Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties☆ , 1985 .

[25]  S. Edgell,et al.  Effect of violation of normality on the t test of the correlation coefficient. , 1984 .

[26]  S. Weisberg,et al.  Diagnostics for heteroscedasticity in regression , 1983 .

[27]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[28]  T. Breurch,et al.  A simple test for heteroscedasticity and random coefficient variation (econometrica vol 47 , 1979 .

[29]  D. Hinkley Jackknifing in Unbalanced Situations , 1977 .

[30]  G. T. Duncan,et al.  A Monte-Carlo study of asymptotically robust tests for correlation coefficients , 1973 .

[31]  C. Kowalski On the Effects of Non‐Normality on the Distribution of the Sample Product‐Moment Correlation Coefficient , 1972 .

[32]  S. Goldfeld,et al.  Some Tests for Homoscedasticity , 1965 .

[33]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[34]  F. Eicker Asymptotic Normality and Consistency of the Least Squares Estimators for Families of Linear Regressions , 1963 .

[35]  C. F. Wu JACKKNIFE , BOOTSTRAP AND OTHER RESAMPLING METHODS IN REGRESSION ANALYSIS ' BY , 2008 .

[36]  Ayşen Akkaya,et al.  Robust Estimation and Hypothesis Testing , 2004 .

[37]  J.,et al.  Variances are Not Always Nuisance Parameters , 2003 .

[38]  Jürgen Gross,et al.  Linear Regression , 2003 .

[39]  William D. Berry Understanding regression assumptions , 1993 .

[40]  R. Darlington,et al.  Regression and Linear Models , 1990 .

[41]  Peter E. Kennedy,et al.  On inference in the presence of heteroskedasticity without replicated observations , 1990 .

[42]  Harry Smith,et al.  Applied Regression Analysis , 1968 .

[43]  F. Eicker Limit Theorems for Regressions with Unequal and Dependent Errors , 1967 .

[44]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[45]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.