Matrix permanent and quantum entanglement of permutation invariant states

We point out that a geometric measure of quantum entanglement is related to the matrix permanent when restricted to permutation invariant states. This connection allows us to interpret the permanent as an angle between vectors. By employing a recently introduced permanent inequality by Carlen et al. [Methods Appl. Anal. 13, 1 (2006)], we can prove explicit formulas of the geometric measure for permutation invariant basis states in a simple way.

[1]  Shmuel Friedland,et al.  Concentration of permanent estimators for certain large matrices , 2004 .

[2]  Dominic J. A. Welsh,et al.  The Computational Complexity of Some Classical Problems from Statistical Physics , 1990 .

[3]  Tzu-Chieh Wei Relative entropy of entanglement for multipartite mixed states: Permutation-invariant states and Dür states , 2008 .

[4]  Alex Samorodnitsky,et al.  A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents , 1998, STOC '98.

[5]  H. Wilf On the Permanent of a Doubly Stochastic Matrix , 1966, Canadian Journal of Mathematics.

[6]  Kristian D. Kennaway,et al.  Dimer models and toric diagrams , 2005, hep-th/0503149.

[7]  Andrei Okounkov,et al.  Quantum Calabi-Yau and Classical Crystals , 2003 .

[8]  Seán Dineen,et al.  Complex Analysis on Infinite Dimensional Spaces , 1999 .

[9]  Quantum interference and Monte Carlo simulations of multiparticle production , 1995, hep-ph/9504349.

[10]  T. Wei Exchange symmetry and global entanglement and full separability , 2010, 1005.5407.

[11]  P. W. Kasteleyn The Statistics of Dimers on a Lattice , 1961 .

[12]  A. Shimony Degree of Entanglement a , 1995 .

[13]  Mark Jerrum An analysis of a Monte Carlo algorithm for estimating the permanent , 1993, IPCO.

[14]  Andrei Z. Broder,et al.  How hard is it to marry at random? (On the approximation of the permanent) , 1986, STOC '86.

[15]  Lin Yu-qing,et al.  Matching polynomial of graph , 2007 .

[16]  P. Goldbart,et al.  Geometric measure of entanglement and applications to bipartite and multipartite quantum states , 2003, quant-ph/0307219.

[17]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[18]  Richard J. Lipton,et al.  A Monte-Carlo Algorithm for Estimating the Permanent , 1993, SIAM J. Comput..

[19]  Alexander I. Barvinok,et al.  Polynomial Time Algorithms to Approximate Permanents and Mixed Discriminants Within a Simply Exponential Factor , 1999, Random Struct. Algorithms.

[20]  M. Atiyah The Unity of Mathematics , 1978 .

[21]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[22]  Todd B. Pittman,et al.  Linear optical quantum computing , 2003 .

[23]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[24]  Jeremy L O'Brien,et al.  Linear optical quantum computing , 2002 .

[25]  M. B. Plenio,et al.  Entanglement of multiparty stabilizer, symmetric, and antisymmetric states , 2007, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[26]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[27]  Alex Samorodnitsky An upper bound for permanents of nonnegative matrices , 2008, J. Comb. Theory, Ser. A.

[28]  Kae Nemoto,et al.  Measurement-induced nonlinearity in linear optics , 2003, quant-ph/0305082.

[29]  E. R. Caianiello,et al.  On quantum field theory — I: explicit solution of Dyson’s equation in electrodynamics without use of feynman graphs , 1953 .

[30]  M. Murao,et al.  The geometric measure of entanglement for a symmetric pure state with non-negative amplitudes , 2009, 0905.0010.

[31]  William J. Munro,et al.  Connections between relative entropy of entanglement and geometric measure of entanglement , 2004, Quantum Inf. Comput..

[32]  O. J. Heilmann,et al.  Theory of monomer-dimer systems , 1972 .

[33]  Leonid Gurvits Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.

[34]  Crystal Melting and Black Holes , 2006, hep-th/0610005.

[35]  H. Barnum,et al.  Monotones and invariants for multi-particle quantum states , 2001, quant-ph/0103155.

[36]  G. Egorychev The solution of van der Waerden's problem for permanents , 1981 .

[37]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[38]  Lars Eilstrup Rasmussen,et al.  Approximating the Permanent: A Simple Approach , 1994, Random Struct. Algorithms.

[39]  Henryk Minc,et al.  Theory of permanents 1982–1985 , 1987 .

[40]  M. Murao,et al.  Bounds on multipartite entangled orthogonal state discrimination using local operations and classical communication. , 2005, Physical review letters.

[41]  Henryk Minc,et al.  Theory of permanents 1978–1981 , 1983 .

[42]  P. Knight,et al.  Quantum gates and decoherence , 2004, quant-ph/0403152.

[43]  Yiju Wang,et al.  On the best rank-1 approximation to higher-order symmetric tensors , 2007, Math. Comput. Model..

[44]  O. Gühne,et al.  Geometric measure of entanglement for symmetric states , 2009, 0905.4822.

[45]  DaeKil Park,et al.  Maximally entangled three-qubit states via geometric measure of entanglement , 2009, 0905.3791.

[46]  Elliott H. Lieb,et al.  An Inequality of Hadamard Type for Permanents , 2005 .

[47]  P. W. Kasteleyn The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .