Understanding microRNA-mediated gene regulatory networks through mathematical modelling

The discovery of microRNAs (miRNAs) has added a new player to the regulation of gene expression. With the increasing number of molecular species involved in gene regulatory networks, it is hard to obtain an intuitive understanding of network dynamics. Mathematical modelling can help dissecting the role of miRNAs in gene regulatory networks, and we shall here review the most recent developments that utilise different mathematical modelling approaches to provide quantitative insights into the function of miRNAs in the regulation of gene expression. Key miRNA regulation features that have been elucidated via modelling include: (i) the role of miRNA-mediated feedback and feedforward loops in fine-tuning of gene expression; (ii) the miRNA–target interaction properties determining the effectiveness of miRNA-mediated gene repression; and (iii) the competition for shared miRNAs leading to the cross-regulation of genes. However, there is still lack of mechanistic understanding of many other properties of miRNA regulation like unconventional miRNA–target interactions, miRNA regulation at different sub-cellular locations and functional miRNA variant, which will need future modelling efforts to deal with. This review provides an overview of recent developments and challenges in this field.

[1]  Cristian Loretelli,et al.  From pseudo-ceRNAs to circ-ceRNAs: a tale of cross-talk and competition , 2013, Nature Structural &Molecular Biology.

[2]  P. Sharp,et al.  RNA-mediated degradation of microRNAs: A widespread viral strategy? , 2015, RNA biology.

[3]  B. Pützer,et al.  Checks and balances: E2F—microRNA crosstalk in cancer control , 2010, Cell cycle.

[4]  O. Wolkenhauer,et al.  A Systems' Biology Approach to Study MicroRNA-Mediated Gene Regulatory Networks , 2013, BioMed research international.

[5]  M. Carletti,et al.  Stochastic modelling of PTEN regulation in brain tumors: A model for glioblastoma multiforme. , 2015, Mathematical biosciences and engineering : MBE.

[6]  Adilson E Motter,et al.  Slowly Produced MicroRNAs Control Protein Levels* , 2010, The Journal of Biological Chemistry.

[7]  G. Calin,et al.  Exosomes as divine messengers: are they the Hermes of modern molecular oncology? , 2014, Cell Death and Differentiation.

[8]  Andrea Masotti,et al.  Recent Insights and Novel Bioinformatics Tools to Understand the Role of MicroRNAs Binding to 5′ Untranslated Region , 2012, International journal of molecular sciences.

[9]  Michael Q. Zhang,et al.  Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit , 2015, Proceedings of the National Academy of Sciences.

[10]  A. Mele,et al.  Hepatitis C Virus RNA Functionally Sequesters miR-122 , 2015, Cell.

[11]  Samy Lamouille,et al.  Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs. , 2013, Current opinion in cell biology.

[12]  S. Vasudevan Posttranscriptional Upregulation by MicroRNAs , 2012, Wiley interdisciplinary reviews. RNA.

[13]  C. Croce Causes and consequences of microRNA dysregulation in cancer , 2009, Nature Reviews Genetics.

[14]  K. Zen,et al.  Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system , 2011, Cell Research.

[15]  A. Pasquinelli,et al.  MicroRNA biogenesis: regulating the regulators , 2013, Critical reviews in biochemistry and molecular biology.

[16]  Kotb Abdelmohsen,et al.  Functional interactions among microRNAs and long noncoding RNAs. , 2014, Seminars in cell & developmental biology.

[17]  Claude Gérard,et al.  microRNA as a Potential Vector for the Propagation of Robustness in Protein Expression and Oscillatory Dynamics within a ceRNA Network , 2013, PloS one.

[18]  M. Kay,et al.  Regulation of miRNA-mediated gene silencing by miRNA precursors , 2014, Nature Structural &Molecular Biology.

[19]  Herbert Levine,et al.  Target-specific and global effectors in gene regulation by MicroRNA. , 2007, Biophysical journal.

[20]  Matteo Figliuzzi,et al.  RNA-based regulation: dynamics and response to perturbations of competing RNAs. , 2013, Biophysical journal.

[21]  P. Pandolfi,et al.  The multilayered complexity of ceRNA crosstalk and competition , 2014, Nature.

[22]  Jianhua Xing,et al.  Coupled reversible and irreversible bistable switches underlying TGFβ-induced epithelial to mesenchymal transition. , 2013, Biophysical journal.

[23]  Shuiming Cai,et al.  Mechanisms generating bistability and oscillations in microRNA-mediated motifs. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  M. Ramanathan,et al.  Dicer and microRNA expression in multiple sclerosis and response to interferon therapy , 2016, Journal of Neuroimmunology.

[25]  A. Kanai,et al.  Systems Biology Reveals MicroRNA-Mediated Gene Regulation , 2011, Front. Gene..

[26]  E Giampieri,et al.  Stochastic analysis of a miRNA-protein toggle switch. , 2011, Molecular bioSystems.

[27]  I. Rigoutsos New tricks for animal microRNAS: targeting of amino acid coding regions at conserved and nonconserved sites. , 2009, Cancer research.

[28]  R. Gregory,et al.  A Biogenesis Step Upstream of Microprocessor Controls miR-17∼92 Expression , 2015, Cell.

[29]  Olivier Voinnet,et al.  Revisiting the principles of microRNA target recognition and mode of action , 2009, Nature Reviews Molecular Cell Biology.

[30]  Z. Khatoon,et al.  Introduction to RNA‐Seq and its Applications to Drug Discovery and Development , 2014, Drug development research.

[31]  Stefano Piccolo,et al.  MicroRNA control of signal transduction , 2010, Nature Reviews Molecular Cell Biology.

[32]  A. Bader miR-34 – a microRNA replacement therapy is headed to the clinic , 2012, Front. Gene..

[33]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[34]  A. Pasquinelli,et al.  MicroRNA assassins: factors that regulate the disappearance of miRNAs , 2010, Nature Structural &Molecular Biology.

[35]  H. Ford,et al.  Epithelial-Mesenchymal Transition in Cancer: Parallels Between Normal Development and Tumor Progression , 2010, Journal of Mammary Gland Biology and Neoplasia.

[36]  J. Tyson,et al.  Design principles of biochemical oscillators , 2008, Nature Reviews Molecular Cell Biology.

[37]  H. Westerhoff,et al.  Mathematical modelling of miRNA mediated BCR.ABL protein regulation in chronic myeloid leukaemia vis-a-vis therapeutic strategies. , 2013, Integrative biology : quantitative biosciences from nano to macro.

[38]  An-Yuan Guo,et al.  Transcription factor and microRNA co-regulatory loops: important regulatory motifs in biological processes and diseases , 2015, Briefings Bioinform..

[39]  C. Sander,et al.  Target mRNA abundance dilutes microRNA and siRNA activity , 2010, Molecular systems biology.

[40]  O. Wolkenhauer,et al.  Modeling miRNA regulation in cancer signaling systems: miR-34a regulation of the p53/Sirt1 signaling module. , 2012, Methods in molecular biology.

[41]  Amy Y. M. Au,et al.  RBM3 regulates temperature sensitive miR-142–5p and miR-143 (thermomiRs), which target immune genes and control fever , 2016, Nucleic acids research.

[42]  Michael W. Y. Chan,et al.  A Mathematical Model of Bimodal Epigenetic Control of miR-193a in Ovarian Cancer Stem Cells , 2014, PloS one.

[43]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[44]  Carla Bosia,et al.  The Role of Incoherent MicroRNA-Mediated Feedforward Loops in Noise Buffering , 2010, PLoS Comput. Biol..

[45]  Jian Li,et al.  A microRNA molecular modeling extension for prediction of colorectal cancer treatment , 2015, BMC Cancer.

[46]  Eshel Ben-Jacob,et al.  Toward decoding the principles of cancer metastasis circuits. , 2014, Cancer research.

[47]  Yong Chen,et al.  MicroRNA-Mediated Positive Feedback Loop and Optimized Bistable Switch in a Cancer Network Involving miR-17-92 , 2011, PloS one.

[48]  Raya Khanin,et al.  Computational Modeling of Post-Transcriptional Gene Regulation by MicroRNAs , 2008, J. Comput. Biol..

[49]  Hui Zhou,et al.  starBase: a database for exploring microRNA–mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data , 2010, Nucleic Acids Res..

[50]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[51]  Phillip A Sharp,et al.  Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. , 2014, Molecular cell.

[52]  F. Slack,et al.  Oncomirs — microRNAs with a role in cancer , 2006, Nature Reviews Cancer.

[53]  Martin L. Miller,et al.  Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs , 2009, Nature Biotechnology.

[54]  P. Zamore,et al.  Kinetic analysis of the RNAi enzyme complex , 2004, Nature Structural &Molecular Biology.

[55]  Avner Friedman,et al.  MicroRNA regulation of a cancer network: Consequences of the feedback loops involving miR-17-92, E2F, and Myc , 2008, Proceedings of the National Academy of Sciences.

[56]  M. Kiebler,et al.  Faculty Opinions recommendation of Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. , 2009 .

[57]  C. Croce,et al.  Clinical Applications for microRNAs in Cancer , 2013, Clinical pharmacology and therapeutics.

[58]  Eshel Ben-Jacob,et al.  Implications of the Hybrid Epithelial/Mesenchymal Phenotype in Metastasis , 2015, Front. Oncol..

[59]  P. Sharp,et al.  MicroRNA functions in stress responses. , 2010, Molecular cell.

[60]  Margaret S. Ebert,et al.  Roles for MicroRNAs in Conferring Robustness to Biological Processes , 2012, Cell.

[61]  J. Mendell,et al.  MicroRNAs in cell proliferation, cell death, and tumorigenesis , 2006, British Journal of Cancer.

[62]  K. Sakurai,et al.  The miR-199a/Brm/EGR1 axis is a determinant of anchorage-independent growth in epithelial tumor cell lines , 2015, Scientific Reports.

[63]  Ruedi Aebersold,et al.  Timescales and bottlenecks in miRNA-dependent gene regulation , 2013, Molecular systems biology.

[64]  D. Geman,et al.  Computational Medicine: Translating Models to Clinical Care , 2012 .

[65]  Olaf Wolkenhauer,et al.  MicroRNA-regulated networks: the perfect storm for classical molecular biology, the ideal scenario for systems biology. , 2013, Advances in experimental medicine and biology.

[66]  H. Grosshans,et al.  MicroRNA turnover: when, how, and why. , 2012, Trends in biochemical sciences.

[67]  F Xu,et al.  Dynamics of microRNA-mediated motifs. , 2009, IET systems biology.

[68]  Thorsten M. Buzug,et al.  Modelling of glioblastoma growth by linking a molecular interaction network with an agent-based model , 2013 .

[69]  Hanah Margalit,et al.  Interactions between Distant ceRNAs in Regulatory Networks , 2014, Biophysical journal.

[70]  Feng Chen,et al.  A challenge for miRNA: multiple isomiRs in miRNAomics. , 2014, Gene.

[71]  Yitzhak Pilpel,et al.  Global and Local Architecture of the Mammalian microRNA–Transcription Factor Regulatory Network , 2007, PLoS Comput. Biol..

[72]  Eshel Ben-Jacob,et al.  MicroRNA-based regulation of epithelial–hybrid–mesenchymal fate determination , 2013, Proceedings of the National Academy of Sciences.

[73]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.

[74]  Andrei Zinovyev,et al.  Kinetic signatures of microRNA modes of action. , 2012, RNA.

[75]  N. Novère Quantitative and logic modelling of molecular and gene networks , 2015, Nature Reviews Genetics.

[76]  Zengrong Liu,et al.  Bistability and Oscillations in Gene Regulation Mediated by Small Noncoding RNAs , 2011, PloS one.

[77]  C. Croce,et al.  MicroRNAs in Cancer. , 2009, Annual review of medicine.

[78]  Nikolaus Rajewsky,et al.  The Impact of miRNA Target Sites in Coding Sequences and in 3′UTRs , 2011, PloS one.

[79]  Mark Gerstein,et al.  Target hub proteins serve as master regulators of development in yeast. , 2006, Genes & development.

[80]  O. Wolkenhauer Why model? , 2013, Front. Physiol..

[81]  Vikram Agarwal,et al.  Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. , 2014, Molecular cell.

[82]  Zhaolei Zhang,et al.  Computational Biology in microRNA , 2015, Wiley interdisciplinary reviews. RNA.

[83]  Olaf Wolkenhauer,et al.  The RNA world in the 21st century - a systems approach to finding non-coding keys to clinical questions , 2016, Briefings Bioinform..

[84]  J. Mendell,et al.  MicroRNAs in Stress Signaling and Human Disease , 2012, Cell.

[85]  C. Gadgil,et al.  Analysis of miRNA regulation suggests an explanation for 'unexpected' increase in target protein levels. , 2012, Molecular bioSystems.

[86]  Olaf Wolkenhauer,et al.  Web resources for microRNA research. , 2013, Advances in experimental medicine and biology.

[87]  B. Kholodenko Cell-signalling dynamics in time and space , 2006, Nature Reviews Molecular Cell Biology.

[88]  Shangying Wang,et al.  Quantifying negative feedback regulation by micro-RNAs , 2011, Physical biology.

[89]  N. Kosaka,et al.  Trash or Treasure: extracellular microRNAs and cell-to-cell communication , 2013, Front. Genet..

[90]  Ana Kozomara,et al.  miRBase: annotating high confidence microRNAs using deep sequencing data , 2013, Nucleic Acids Res..

[91]  Andrei Zinovyev,et al.  Mathematical modeling of microRNA-mediated mechanisms of translation repression. , 2012, Advances in experimental medicine and biology.

[92]  Ming-Jing Hwang,et al.  The role of microRNA in the delayed negative feedback regulation of gene expression. , 2007, Biochemical and biophysical research communications.

[93]  Varda Rotter,et al.  Coupling transcriptional and post-transcriptional miRNA regulation in the control of cell fate , 2009, Aging.

[94]  Rui Alves,et al.  Tools for kinetic modeling of biochemical networks , 2006, Nature Biotechnology.

[95]  Jean Hausser,et al.  MicroRNA binding sites in the coding region of mRNAs: Extending the repertoire of post‐transcriptional gene regulation , 2014, BioEssays : news and reviews in molecular, cellular and developmental biology.

[96]  A. van Oudenaarden,et al.  Noise Propagation in Gene Networks , 2005, Science.

[97]  M. Dinger,et al.  Endogenous microRNA sponges: evidence and controversy , 2016, Nature Reviews Genetics.

[98]  Yong Chen,et al.  Noise Propagation in Gene Regulation Networks Involving Interlinked Positive and Negative Feedback Loops , 2012, PloS one.

[99]  M. Samsonova,et al.  Dynamics of miRNA driven feed-forward loop depends upon miRNA action mechanisms , 2014, BMC Genomics.

[100]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[101]  Carla Bosia,et al.  Gene autoregulation via intronic microRNAs and its functions , 2012, BMC Systems Biology.

[102]  W. Filipowicz,et al.  The widespread regulation of microRNA biogenesis, function and decay , 2010, Nature Reviews Genetics.

[103]  Debora S. Marks,et al.  MicroRNA control of protein expression noise , 2015, Science.

[104]  K. Basso,et al.  RNAs with multiple personalities , 2014, Wiley interdisciplinary reviews. RNA.

[105]  Brian D Athey,et al.  New class of microRNA targets containing simultaneous 5'-UTR and 3'-UTR interaction sites. , 2009, Genome research.

[106]  Olaf Wolkenhauer,et al.  Cooperative gene regulation by microRNA pairs and their identification using a computational workflow , 2014, Nucleic acids research.

[107]  Roy Parker,et al.  Computational analysis of miRNA-mediated repression of translation: implications for models of translation initiation inhibition. , 2008, RNA.

[108]  C. Bracken,et al.  IsomiRs--the overlooked repertoire in the dynamic microRNAome. , 2012, Trends in genetics : TIG.

[109]  Mary J Dunlop,et al.  Multiple functions of a feed-forward-loop gene circuit. , 2005, Journal of molecular biology.

[110]  John J Tyson,et al.  Functional motifs in biochemical reaction networks. , 2010, Annual review of physical chemistry.

[111]  Noam Shomron,et al.  Canalization of development by microRNAs , 2006, Nature Genetics.

[112]  S. Cohen,et al.  MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. , 2010, Genes & development.

[113]  O. Hobert Gene Regulation by Transcription Factors and MicroRNAs , 2008, Science.

[114]  Avner Friedman,et al.  miR451 and AMPK Mutual Antagonism in Glioma Cell Migration and Proliferation: A Mathematical Model , 2011, PloS one.

[115]  Muneesh Tewari,et al.  Quantitative and stoichiometric analysis of the microRNA content of exosomes , 2014, Proceedings of the National Academy of Sciences.

[116]  C. Croce,et al.  MicroRNAs as therapeutic targets in chemoresistance. , 2013, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[117]  Annie Z. Tremp Malaria: Plasmodium develops in lymph nodes , 2006, Nature Reviews Microbiology.

[118]  Andrea Riba,et al.  A Combination of Transcriptional and MicroRNA Regulation Improves the Stability of the Relative Concentrations of Target Genes , 2013, PLoS Comput. Biol..

[119]  R. Kalluri,et al.  Molecular Pathways Molecular Pathways : MicroRNAs as Cancer Therapeutics , 2012 .

[120]  Grace X. Y. Zheng,et al.  MicroRNAs can generate thresholds in target gene expression , 2011, Nature Genetics.

[121]  B. Kholodenko,et al.  The dynamic control of signal transduction networks in cancer cells , 2015, Nature Reviews Cancer.

[122]  Xianghuo He,et al.  Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region , 2010, Oncogene.

[123]  W. Filipowicz,et al.  Regulation of mRNA translation and stability by microRNAs. , 2010, Annual review of biochemistry.

[124]  D. di Bernardo,et al.  miRNAs confer phenotypic robustness to gene networks by suppressing biological noise , 2013, Nature Communications.

[125]  Paul J. Hertzog,et al.  Analysis of microRNA turnover in mammalian cells following Dicer1 ablation , 2011, Nucleic acids research.

[126]  N. Barkai,et al.  Efficiency and specificity in microRNA biogenesis , 2012, Nature Structural &Molecular Biology.

[127]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[128]  Olaf Wolkenhauer,et al.  Computational analysis of target hub gene repression regulated by multiple and cooperative miRNAs , 2012, Nucleic acids research.

[129]  A. Friedman,et al.  A Mathematical Model for MicroRNA in Lung Cancer , 2013, PloS one.

[130]  Nicolas André,et al.  Computational oncology — mathematical modelling of drug regimens for precision medicine , 2016, Nature Reviews Clinical Oncology.

[131]  Alok Bhattacharya,et al.  miRNA-regulated dynamics in circadian oscillator models , 2009, BMC Systems Biology.

[132]  Zengrong Liu,et al.  Dynamic analysis of the combinatorial regulation involving transcription factors and microRNAs in cell fate decisions. , 2014, Biochimica et biophysica acta.

[133]  O. Wolkenhauer,et al.  Kinetic modeling-based detection of genetic signatures that provide chemoresistance via the E2F1-p73/DNp73-miR-205 network. , 2013, Cancer research.

[134]  A. Leung,et al.  The Whereabouts of microRNA Actions: Cytoplasm and Beyond. , 2015, Trends in cell biology.

[135]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[136]  Enzo Marinari,et al.  Probing the Limits to MicroRNA-Mediated Control of Gene Expression , 2016, PLoS Comput. Biol..

[137]  Emmanuel Barillot,et al.  Dynamical modeling of microRNA action on the protein translation process , 2009, BMC Systems Biology.

[138]  C. Green,et al.  Post-transcriptional control of circadian rhythms , 2011, Journal of Cell Science.

[139]  F. Michor,et al.  Improving Cancer Treatment via Mathematical Modeling: Surmounting the Challenges Is Worth the Effort , 2015, Cell.

[140]  Carla P. Concepcion,et al.  The MicroRNA-17-92 Family of MicroRNA Clusters in Development and Disease , 2012, Cancer journal.

[141]  Anne Gatignol,et al.  Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC , 2007, Nucleic acids research.

[142]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[143]  D. Zack,et al.  Analysis of regulatory network topology reveals functionally distinct classes of microRNAs , 2008, Nucleic acids research.

[144]  A. van Oudenaarden,et al.  MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. , 2007, Molecular cell.

[145]  Pankaj Mehta,et al.  Intrinsic Noise of microRNA-Regulated Genes and the ceRNA Hypothesis , 2012, PloS one.

[146]  Francis Doyle,et al.  Trans-regulation of RNA-binding protein motifs by microRNA , 2014, Front. Genet..

[147]  Zengrong Liu,et al.  Functional characteristics of a double negative feedback loop mediated by microRNAs , 2013, Cognitive Neurodynamics.

[148]  François Major,et al.  MiRBooking simulates the stoichiometric mode of action of microRNAs , 2015, Nucleic acids research.

[149]  S. Strogatz Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering , 1995 .

[150]  Lan Ma,et al.  MiR-192-Mediated Positive Feedback Loop Controls the Robustness of Stress-Induced p53 Oscillations in Breast Cancer Cells , 2015, PLoS Comput. Biol..

[151]  R. Zecchina,et al.  Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments , 2013, Proceedings of the National Academy of Sciences.

[152]  Manu S. Madhav,et al.  Feedback control as a framework for understanding tradeoffs in biology. , 2014, Integrative and comparative biology.

[153]  Ajish D George,et al.  MicroRNA Modulation of RNA-Binding Protein Regulatory Elements , 2006, RNA biology.

[154]  Chen Zhao,et al.  Computational Model of MicroRNA Control of HIF-VEGF Pathway: Insights into the Pathophysiology of Ischemic Vascular Disease and Cancer , 2015, PLoS Comput. Biol..

[155]  U. Alon,et al.  The incoherent feedforward loop can provide fold-change detection in gene regulation. , 2009, Molecular cell.

[156]  C. Gadgil,et al.  Mathematical modeling of combinatorial regulation suggests that apparent positive regulation of targets by miRNA could be an artifact resulting from competition for mRNA , 2015, RNA.

[157]  Subbaya Subramanian,et al.  Competing endogenous RNAs (ceRNAs): new entrants to the intricacies of gene regulation , 2014, Front. Genet..

[158]  Ola Snøve,et al.  Distance constraints between microRNA target sites dictate efficacy and cooperativity , 2007, Nucleic acids research.

[159]  S. Anant,et al.  Manipulating MiRNA Expression: a Novel Approach for Colon Cancer Prevention and Chemotherapy , 2015, Current Pharmacology Reports.

[160]  C. Théry Exosomes: secreted vesicles and intercellular communications , 2011, F1000 biology reports.

[161]  P. Pandolfi,et al.  A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? , 2011, Cell.

[162]  S. Bodovitz,et al.  Single cell analysis: the new frontier in 'omics'. , 2010, Trends in biotechnology.

[163]  Riccardo Zecchina,et al.  Modelling Competing Endogenous RNA Networks , 2013, PloS one.

[164]  Johannes Berg,et al.  Quantitative analysis of competition in posttranscriptional regulation reveals a novel signature in target expression variation. , 2012, Biophysical journal.

[165]  A. Oudenaarden,et al.  Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences , 2008, Cell.

[166]  Nikolaus Rajewsky,et al.  Competition between target sites of regulators shapes post-transcriptional gene regulation , 2014, Nature Reviews Genetics.

[167]  Matteo Figliuzzi,et al.  MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory. , 2012, Biophysical journal.

[168]  Tobias Galla,et al.  microRNA input into a neural ultradian oscillator controls emergence and timing of alternative cell states , 2014, Nature Communications.

[169]  Eshel Ben-Jacob,et al.  Modeling the Transitions between Collective and Solitary Migration Phenotypes in Cancer Metastasis , 2015, Scientific Reports.

[170]  Wang Xia,et al.  A modeled dynamic regulatory network of NF-κB and IL-6 mediated by miRNA , 2013, Biosyst..

[171]  Natalie G Ahn,et al.  Quantitative functions of Argonaute proteins in mammalian development. , 2012, Genes & development.

[172]  Zengrong Liu,et al.  Dynamical Behaviors of Rb-E2F Pathway Including Negative Feedback Loops Involving miR449 , 2012, PloS one.

[173]  R. Huang,et al.  Epithelial-Mesenchymal Transitions in Development and Disease , 2009, Cell.