Micro-thermoelectric cooler: interfacial effects on thermal and electrical transport

Abstract The flows of heat and electricity in a column-type micro-thermoelectric cooler are analyzed by modeling the various interfacial resistances. Electron (barrier tunneling) and phonon (diffuse mismatch) boundary resistances at the thermoelectric/metal interface, and thermal non-equilibrium between electrons and phonons adjacent to this interface (cooling length), increase the thermal conduction resistance and decrease the Seebeck coefficient of the thermoelectric elements. These in turn reduce the device cooling performance, which is also affected by the thermal and electrical contact resistances at the thermoelectric/metal and metal/electrical-insulator interfaces. To produce a temperature drop of 10 K with a cooling load of 10 mW, the optimum number of thermoelement pairs, operating current, and coefficient of performance, based on vapor deposited 4 μm thick films of Bi 2 Te 3 and Sb 2 Te 3 , are predicted for a micro-thermoelectric cooler operating with a 3 V battery.

[1]  G. Mahan,et al.  Chapter 8 Heat and electricity transport through interfaces , 2001 .

[2]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[3]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[4]  Patrick E. Phelan,et al.  Application of Diffuse Mismatch Theory to the Prediction of Thermal Boundary Resistance in Thin-Film High-Tc Superconductors , 1996, Microelectromechanical Systems (MEMS).

[5]  M. Lundstrom Fundamentals of carrier transport , 1990 .

[6]  Ove Jepsen,et al.  Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide , 1997 .

[7]  S. Sze Semiconductor Devices: Physics and Technology , 1985 .

[8]  D. R. Freitag,et al.  Principles of Heat Transfer , 1997 .

[9]  M Henini,et al.  Principles of Electronic Materials and Devices (Second Edition): S.O. Kasap: McGraw-Hill, 2002. 745 pp, ISBN 0-07-112237-0 , 2002 .

[10]  R. Geick,et al.  Generalized phonon density of states of the layer compounds Bi2Se3, Bi2Te3, Sb2Te3 and Bi2(Te0.5Se0.5)3, (Bi0.5Sb0.5)2Te3 , 1981 .

[11]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[12]  Anthony,et al.  Measurements of the Kapitza conductance between diamond and several metals. , 1992, Physical review letters.

[13]  Richard Ewell,et al.  Thermoelectric microcoolers for thermal management applications , 1997, XVI ICT '97. Proceedings ICT'97. 16th International Conference on Thermoelectrics (Cat. No.97TH8291).

[14]  D. M. Rowe,et al.  Peltier effect in a co-evaporated Sb2Te3(P)-Bi2Te3(N) thin film thermocouple , 2002 .

[15]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[16]  G. Chen,et al.  Design of Thin-Film Thermoelectric Microcoolers , 2000, Heat Transfer: Volume 2.

[17]  K. Mukasa,et al.  Evaluation of metal-Bi2Te3 contacts by electron tunneling spectroscopy , 1996, Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96.

[18]  Gao Min,et al.  Improved model for calculating the coefficient of performance of a Peltier module , 2000 .

[19]  S. Wolf,et al.  Silicon Processing for the VLSI Era , 1986 .

[20]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[21]  T. Nguyen,et al.  Experimental investigation on the thermal contact resistance between gold coating and ceramic substrates , 2001 .

[22]  Private Communications , 2001 .

[23]  V. Damodara Das,et al.  Thermoelectric power and electrical resistivity of crystalline antimony telluride (Sb2Te3) thin films: Temperature and size effects , 1989 .

[24]  C. Uher,et al.  Heat transport in Sb2-xVxTe3 single crystals , 2002 .

[25]  V. Sandomirsky,et al.  Electric-field-effect thermoelectrics , 2001 .

[26]  Patrick E. Phelan,et al.  A Scattering-Mediated Acoustic Mismatch Model for the Prediction of Thermal Boundary Resistance , 2001 .

[27]  S. Orain,et al.  Use of genetic algorithms for the simultaneous estimation of thin films thermal conductivity and contact resistances , 2001 .

[28]  C. Uher,et al.  Heat transport in Sb 2Àx V x Te 3 single crystals , 2002 .

[29]  R. Jaeger Introduction to microelectronic fabrication , 1987 .

[30]  G. Mahan,et al.  Multilayer thermionic refrigeration , 1998, Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407).

[31]  C. Uher,et al.  Preparation and some physical properties of tetradymite-type Sb2Te3 single crystals doped with CdS , 2001 .

[32]  Gao Min,et al.  Growth of p- and n-type bismuth telluride thin films by co-evaporation , 2001 .

[33]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[34]  Y. Gurevich,et al.  The electron-phonon drag and transport phenomena in semiconductors , 1989 .

[35]  Chang-Jin Kim,et al.  Spot cooling using thermoelectric microcoolers , 1999, Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407).

[36]  D. Rowe,et al.  Cooling performance of integrated thermoelectric microcooler , 1999 .

[37]  Nano-to-Macroscale Transport Modeling Through Approximations , 2002 .