Nanoscale heat flux between nanoporous materials.

By combining stochastic electrodynamics and the Maxwell-Garnett description for effective media we study the radiative heat transfer between two nanoporous materials. We show that the heat flux can be significantly enhanced by air inclusions, which we explain by: (a) the presence of additional surface waves that give rise to supplementary channels for heat transfer throughout the gap, (b) an increase in the contribution given by the ordinary surface waves at resonance, (c) and the appearance of frustrated modes over a broad spectral range. We generalize the known expression for the nanoscale heat flux for anisotropic metamaterials.

[1]  J. Greffet,et al.  Mesoscopic description of radiative heat transfer at the nanoscale. , 2010, Physical review letters.

[2]  K. Joulain,et al.  Fundamental limits for noncontact transfers between two bodies , 2010, 1009.4598.

[3]  E. E. Narimanov,et al.  Engineering photonic density of states using metamaterials , 2010, 1005.5172.

[4]  Philippe Ben-Abdallah,et al.  Noncontact heat transfer between two metamaterials , 2010 .

[5]  Jean-Jacques Greffet,et al.  Quantum theory of spontaneous and stimulated emission of surface plasmons , 2010, 1004.0135.

[6]  J. Sipe,et al.  Quasiguided surface plasmon excitations in anisotropic materials , 2010 .

[7]  Y. Fainman,et al.  Form-birefringent metal and its plasmonic anisotropy , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[8]  G. Bimonte,et al.  Scattering approach to Casimir forces and radiative heat transfer for nanostructured surfaces out of thermal equilibrium , 2009, 0909.2170.

[9]  Jean-Jacques Greffet,et al.  Radiative heat transfer at the nanoscale , 2009 .

[10]  Martin W. McCall,et al.  What is negative refraction? , 2009, NanoScience + Engineering.

[11]  Gang Chen,et al.  Surface phonon polaritons mediated energy transfer between nanoscale gaps. , 2009, Nano letters.

[12]  E. A. Vinogradov,et al.  Thermally stimulated electromagnetic fields of solids , 2009 .

[13]  Gang Chen,et al.  Near-field radiative heat transfer between a sphere and a substrate , 2008, 0909.0784.

[14]  A. Kittel,et al.  The near-field scanning thermal microscope. , 2008, The Review of scientific instruments.

[15]  Philippe M. Fauchet,et al.  Reflectance analysis of a multilayer one-dimensional porous silicon structure: Theory and experiment , 2008 .

[16]  U. Leonhardt,et al.  Alternative calculation of the Casimir forces between birefringent plates , 2008, 0806.4752.

[17]  Lu Hu,et al.  Near-field Thermal Radiation Between Two Closely Spaced Glass Plates Exceeding Planck’s Blackbody Radiation Law , 2008 .

[18]  Bo N. J. Persson,et al.  Near-field radiative heat transfer and noncontact friction , 2007 .

[19]  V. Shalaev Optical negative-index metamaterials , 2007 .

[20]  Ceji Fu,et al.  Nanoscale radiation heat transfer for silicon at different doping levels , 2006 .

[21]  V. Podolskiy,et al.  Nanowire metamaterials with extreme optical anisotropy , 2006, physics/0604065.

[22]  Wolfgang Müller-Hirsch,et al.  Near-field heat transfer in a scanning thermal microscope. , 2005, Physical review letters.

[23]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[24]  R. Carminati,et al.  Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field , 2005, physics/0504068.

[25]  J. Arriaga,et al.  Long-wavelength limit (homogenization) for two-dimensional photonic crystals , 2002 .

[26]  Clifton G. Fonstad,et al.  Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap , 2001 .

[27]  R. Carminati,et al.  Nanoscale radiative heat transfer between a small particle and a plane surface , 2001 .

[28]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[29]  R. Carminati,et al.  Near-field spectral effects due to electromagnetic surface excitations , 2000, Physical review letters.

[30]  J. Arriaga,et al.  Photonic Crystal Optics and Homogenization of 2D Periodic Composites , 1999 .

[31]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[32]  Q. P. Liu,et al.  On the classical algebra , 1995 .

[33]  H. Maris,et al.  Theory of heat transfer by evanescent electromagnetic waves. , 1994, Physical review. B, Condensed matter.

[34]  Porous silicon microstructure as studied by transmission electron microscopy , 1989 .

[35]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[36]  D. Batens,et al.  Theory and Experiment , 1988 .

[37]  P. Yeh,et al.  Optical Waves in Layered Media , 1988 .

[38]  John E. Sipe,et al.  New Green-function formalism for surface optics , 1987 .

[39]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[40]  M. Hove,et al.  Theory of Radiative Heat Transfer between Closely Spaced Bodies , 1971 .

[41]  F. N. Frenkiel,et al.  Waves In Layered Media , 1960 .