Photoelectrochemical studies of nanocrystalline TiO2 co-sensitized by novel cyanine dyes

[1]  Hironori Arakawa,et al.  Photoelectrochemical Properties of J Aggregates of Benzothiazole Merocyanine Dyes on a Nanostructured TiO2 Film , 2002 .

[2]  A. Ehret,et al.  Spectral Sensitization of TiO2 Nanocrystalline Electrodes with Aggregated Cyanine Dyes , 2001 .

[3]  Jianjun He,et al.  Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO(2) electrode. , 2002, Journal of the American Chemical Society.

[4]  EDWIN E. JELLEY,et al.  Spectral Absorption and Fluorescence of Dyes in the Molecular State , 1936, Nature.

[5]  L. Sereno,et al.  Photosensitization of Thin SnO2 Nanocrystalline Semiconductor Film Electrodes with Metallodiporphyrin , 2000 .

[6]  Chunhui Huang,et al.  Photosensitization of ITO and nanocrystalline TiO2 electrode with a hemicyanine derivative , 2000 .

[7]  H. Forsterling,et al.  Extended dipole model for aggregates of dye molecules , 1970 .

[8]  M. Graetzel,et al.  Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins , 1993 .

[9]  Fuyou Li,et al.  Photoelectric Conversion Properties of Nanocrystalline TiO2 Electrodes Sensitized with Hemicyanine Derivatives , 2000 .

[10]  F. Spano,et al.  Superradiance in molecular aggregates , 1989 .

[11]  Arie Zaban,et al.  Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives , 1997 .

[12]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[13]  M. Kasha,et al.  Enhancement of Phosphorescence Ability upon Aggregation of Dye Molecules , 1958 .

[14]  Carl C. Wamser,et al.  Adsorption and Photoactivity of Tetra(4-carboxyphenyl)porphyrin (TCPP) on Nanoparticulate TiO2 , 2000 .

[15]  Jianjun He,et al.  Phthalocyanine-Sensitized Nanostructured TiO2 Electrodes Prepared by a Novel Anchoring Method , 2001 .

[16]  D. Vandenbroucke,et al.  Chemical structure, aggregate structure and optical properties of adsorbed dye molecules investigated by scanning tunnelling microscopy , 2001 .

[17]  G. Boschloo,et al.  Spectral Sensitization of TiO2 Substrates by Nonolayers of Porphyrin Heterodimers , 2000 .

[18]  R. Humphry-Baker,et al.  Artificial Photosynthesis. 2. Investigations on the Mechanism of Photosensitization of Nanocrystalline TiO2 Solar Cells by Chlorophyll Derivatives , 1994 .

[19]  J. Friedrich,et al.  A hole burning study of excitonic states of chain molecules in glasses , 1989 .

[20]  Hironori Arakawa,et al.  Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes , 2003 .

[21]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[22]  A. Herz Aggregation of sensitizing dyes in solution and their adsorption onto silver halides , 1977 .

[23]  Zuhong Lu,et al.  The mixed effect of phthalocyanine and porphyrin on the photoelectric conversion of a nanostructured TiO2 electrode , 1998 .

[24]  J. Moser,et al.  Merocyanine Aggregation in Mesoporous Networks , 1996 .

[25]  Luis Otero,et al.  Synthesis of porphyrin dyads with potential use in solar energy conversion , 2000 .

[26]  Yaochun Shen,et al.  IMPROVEMENT IN PHOTOELECTRIC CONVERSION OF A PHTHALOCYANINE-SENSITIZED TIO2 ELECTRODE BY DOPING WITH PORPHYRIN , 1998 .

[27]  Fabrice Odobel,et al.  Porphyrin dyes for TiO2 sensitization , 2003 .

[28]  H. Tian,et al.  Wide spectral photosensitization for SnO2 nanoporous electrode with soluble perylene derivatives and cyanine dyes , 2001 .

[29]  H. Tian,et al.  Synthesis of novel multi-chromophoric solubleperylene derivatives and their photosensitizing properties with wide spectralresponse for SnO2 nanoporous electrode , 2000 .

[30]  Anne Ehret,et al.  Variation of carboxylate-functionalized cyanine dyes to produce efficient spectral sensitization of nanocrystalline solar cells , 2000 .

[31]  Michael Grätzel,et al.  Perspectives for dye‐sensitized nanocrystalline solar cells , 2000 .

[32]  H. Tian,et al.  Photoelectric conversion properties of four novel carboxylated hemicyanine dyes on TiO2 electrode , 2003 .

[33]  B. K. Mishra,et al.  Cyanines during the 1990s: A Review. , 2000, Chemical reviews.

[34]  Donald Fitzmaurice,et al.  Spectroscopy of conduction band electrons in transparent metal oxide semiconductor films: optical determination of the flatband potential of colloidal titanium dioxide films , 1992 .

[35]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[36]  Xuesong Wang,et al.  Study on squarylium cyanine dyes for photoelectric conversion , 1999 .

[37]  F. Dietz Quantenchemische untersuchungen an farbstoffaggregaten—II : Die elektronenspekltren von trimethincyanin-polymermodellen , 1977 .

[38]  D. Klug,et al.  Electron injection and recombination in dye sensitized nanocrystalline titanium dioxide films: A comparison of ruthenium bipyridyl and porphyrin sensitizer dyes , 2000 .

[39]  Chunhui Huang,et al.  Photocurrent Enhancement of Hemicyanine Dyes Containing RSO3- Group through Treating TiO2 Films with Hydrochloric Acid , 2001 .

[40]  J. Lenhard,et al.  Effects of J-Aggregation on the Redox Levels of a Cyanine Dye , 1996 .