Tweedie, Bar-Lev, and Enis class of leptokurtic distributions as a candidate for modeling real data

Abstract Modeling real life data is often a demanding task and plethora of distributional models have been proposed in the statistical literature in an attempt to describe different data sets in a better way than those used to describe them. In this article, we establish a broad pool of families of parametric distributions previously used in the literature. This pool, which includes 23 parametric models of distributions, is implemented to test the fit of its models to 17 data sets having different characteristics. In doing so, we will mainly pay attention to a three-parameter model that includes the class of natural exponential families generated by positive stable distributions. Indeed, this is the class we wish to pinpoint in this article and highlight its importance for modeling real data sets. The class is shown to be rather competitive alternative to some well-known parametric models in the pool especially when applied to leptokurtic data sets is available. Appropriate R codes which include all parametric models in the pool are provided in a supplementary file for further applications and implementations for other data sets. Supplemental data for this article is available online at https://doi.org/10.1080/23737484.2021.1880988

[1]  Eisa Mahmoudi,et al.  A new two parameter lifetime distribution: model and properties , 2012 .

[2]  R. Shanker Shanker Distribution and Its Applications , 2015 .

[3]  Debasis Kundu,et al.  Discriminating Among the Log-Normal, Weibull, and Generalized Exponential Distributions , 2009, IEEE Transactions on Reliability.

[4]  Sam C. Saunders,et al.  ESTIMATION FOR A FAMILY OF LIFE DISTRIBUTIONS WITH APPLICATIONS TO FATIGUE , 1969 .

[5]  Elisa T. Lee,et al.  Statistical Methods for Survival Data Analysis , 1994, IEEE Transactions on Reliability.

[6]  Sam C. Saunders,et al.  Estimation for a family of life distributions with applications to fatigue , 1969, Journal of Applied Probability.

[7]  M. E. Ghitany,et al.  Lindley distribution and its application , 2008, Math. Comput. Simul..

[8]  Roger Morrell,et al.  Design Data for Engineering Ceramics: A Review of the Flexure Test , 1991 .

[9]  Jerald F. Lawless,et al.  Statistical Models and Methods for Lifetime Data: Lawless/Statistical , 2002 .

[10]  J Bain Lee,et al.  Probability of correct selection of weibull versus gamma based on livelihood ratio , 1980 .

[11]  C. C. Kokonendji,et al.  On the mean value parametrization of natural exponential families — a revisited review , 2017 .

[12]  Debasis Kundu,et al.  A new class of weighted exponential distributions , 2009 .

[13]  Hagos Fesshaye,et al.  On Modeling of Lifetime Data Using One Parameter Akash, Lindley and Exponential Distributions , 2016 .

[14]  Gordon Johnston,et al.  Statistical Models and Methods for Lifetime Data , 2003, Technometrics.

[15]  B. Tabatabaie C*-ALGEBRA OF CANCELLATIVE SEMIGROUPOIDS , 2009 .

[16]  Debasis Kundu,et al.  Discriminating between the generalized Rayleigh and Weibull distributions: Some comparative studies , 2017, Commun. Stat. Simul. Comput..

[17]  G. Cordeiro,et al.  The Harris Extended Exponential Distribution , 2015 .

[18]  Gordon K. Smyth,et al.  Series evaluation of Tweedie exponential dispersion model densities , 2005, Stat. Comput..

[19]  G. Cordeiro,et al.  The Weibull-geometric distribution , 2008, 0809.2703.

[20]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[21]  Ali Dolati,et al.  Generalized Lindley Distribution , 2009 .

[22]  J. Lieblein,et al.  Statistical Investigation of the Fatigue Life of Deep-Groove Ball Bearings , 1956 .

[23]  Robert C. Scott,et al.  A modified Kolmogorov-Smirnov test for the inverse gaussian density with unknown parameters , 1988 .

[24]  Debasis Kundu,et al.  Discriminating between Weibull and generalized exponential distributions , 2003, Comput. Stat. Data Anal..

[25]  David R. Anderson,et al.  Multimodel Inference , 2004 .

[26]  L. R. Shenton,et al.  Weibull distributions when the shape parameter is defined , 2001 .

[27]  S. Bar-Lev Independent, Tough Identical Results: The Class of Tweedie on Power Variance Functions and the Class of Bar-Lev and Enis on Reproducible Natural Exponential Families , 2019, International Journal of Statistics and Probability.

[28]  Faton Merovci,et al.  A New Generalized Lindley Distribution , 2022, Journal of Statistics Applications & Probability Letters.

[29]  Ancha Xu,et al.  Exponential Dispersion Process for Degradation Analysis , 2019, IEEE Transactions on Reliability.

[30]  Theodora Dimitrakopoulou,et al.  A Lifetime Distribution With an Upside-Down Bathtub-Shaped Hazard Function , 2007, IEEE Transactions on Reliability.

[31]  Gérard Letac,et al.  Natural Real Exponential Families with Cubic Variance Functions , 1990 .

[32]  H. J. Vaman,et al.  Lindley–Exponential distribution: properties and applications , 2015 .

[33]  Debasis Kundu,et al.  Discriminating among Weibull, log-normal, and log-logistic distributions , 2018, Commun. Stat. Simul. Comput..

[34]  Vartan Choulakian,et al.  Goodness-of-Fit Tests for the Generalized Pareto Distribution , 2001, Technometrics.

[35]  Samir K. Ashour,et al.  Exponentiated power Lindley distribution , 2015, Journal of advanced research.

[36]  R Shanker On Generalized Lindley Distribution and Its Applications to Model Lifetime Data from Biomedical Science and Engineering , 2016 .

[37]  E. Stacy A Generalization of the Gamma Distribution , 1962 .

[38]  Elisa Lee,et al.  Statistical Methods for Survival Data Analysis: Lee/Survival Data Analysis , 2003 .

[39]  Shaul K. Bar-Lev,et al.  Reproducibility and natural exponential families with power variance functions , 1986 .

[40]  David Lindley,et al.  Fiducial Distributions and Bayes' Theorem , 1958 .

[41]  M. E. Ghitany,et al.  Power Lindley distribution and associated inference , 2013, Comput. Stat. Data Anal..

[42]  K. K. Jose,et al.  A new 3-parameter extension of generalized lindley distribution , 2016, 1601.01045.

[43]  Gordon K. Smyth,et al.  Evaluation of Tweedie exponential dispersion model densities by Fourier inversion , 2008, Stat. Comput..

[44]  B. Jørgensen Statistical Properties of the Generalized Inverse Gaussian Distribution , 1981 .

[45]  A. Singh Exponential Distribution: Theory, Methods and Applications , 1996 .

[46]  Ananda Sen,et al.  The Theory of Dispersion Models , 1997, Technometrics.

[47]  M. Fréchet Sur la loi de probabilité de l'écart maximum , 1928 .

[48]  S. Sharma,et al.  On Quasi Lindley Distribution and Its Applications to Model Lifetime Data , 2016 .

[49]  Nader Ebrahimi,et al.  Testing exponentiality based on Kullback-Leibler information , 1992 .

[50]  Charles E. Antle,et al.  Discrimination Between the Log-Normal and the Weibull Distributions , 1973 .

[51]  Narayanaswamy Balakrishnan,et al.  Multivariate families of gamma-generated distributions with finite or infinite support above or below the diagonal , 2016, J. Multivar. Anal..

[52]  Walter Zucchini,et al.  Model Selection , 2011, International Encyclopedia of Statistical Science.

[53]  Dulal K. Bhaumik,et al.  Testing Parameters of a Gamma Distribution for Small Samples , 2009, Technometrics.

[54]  Rama Shanker,et al.  On Two - Parameter Lindley Distribution and its Applications to Model Lifetime Data , 2016 .

[55]  E. Crow,et al.  Lognormal Distributions: Theory and Applications , 1987 .

[56]  R. Paris,et al.  New properties and representations for members of the power-variance family. I , 2012 .

[57]  D. Kundu,et al.  Theory & Methods: Generalized exponential distributions , 1999 .

[58]  C. Morris Natural Exponential Families with Quadratic Variance Functions , 1982 .

[59]  B. Jørgensen Exponential Dispersion Models , 1987 .