Acquisition of Phrase Correspondences Using Natural Deduction Proofs

How to identify, extract, and use phrasal knowledge is a crucial problem for the task of Recognizing Textual Entailment (RTE). To solve this problem, we propose a method for detecting paraphrases via natural deduction proofs of semantic relations between sentence pairs. Our solution relies on a graph reformulation of partial variable unifications and an algorithm that induces subgraph alignments between meaning representations. Experiments show that our method can automatically detect various paraphrases that are absent from existing paraphrase databases. In addition, the detection of paraphrases using proof information improves the accuracy of RTE tasks.

[1]  Marco Marelli,et al.  A SICK cure for the evaluation of compositional distributional semantic models , 2014, LREC.

[2]  Lasha Abzianidze,et al.  Natural Solution to FraCaS Entailment Problems , 2016, *SEMEVAL.

[3]  Cuong Chau,et al.  Montague Meets Markov: Deep Semantics with Probabilistic Logical Form , 2013, *SEMEVAL.

[4]  Pascual Martínez-Gómez,et al.  On-demand Injection of Lexical Knowledge for Recognising Textual Entailment , 2017, EACL.

[5]  Christopher Potts,et al.  A large annotated corpus for learning natural language inference , 2015, EMNLP.

[6]  Bevan Jones,et al.  Learning words and syntactic cues in highly ambiguous contexts , 2016 .

[7]  Noah A. Smith,et al.  Toward Abstractive Summarization Using Semantic Representations , 2018, NAACL.

[8]  Wenpeng Yin,et al.  Task-Specific Attentive Pooling of Phrase Alignments Contributes to Sentence Matching , 2017, EACL.

[9]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[10]  Jun'ichi Tsujii,et al.  Monolingual Phrase Alignment on Parse Forests , 2017, EMNLP.

[11]  Yongtang Shi,et al.  Fifty years of graph matching, network alignment and network comparison , 2016, Inf. Sci..

[12]  Mark Steedman,et al.  A* CCG Parsing with a Supertag-factored Model , 2014, EMNLP.

[13]  Philipp Koehn,et al.  Abstract Meaning Representation for Sembanking , 2013, LAW@ACL.

[14]  Pascual Martínez-Gómez,et al.  Determining Semantic Textual Similarity using Natural Deduction Proofs , 2017, EMNLP.

[15]  Pascual Martínez-Gómez,et al.  Higher-order logical inference with compositional semantics , 2015, EMNLP.

[16]  Alice Lai,et al.  Illinois-LH: A Denotational and Distributional Approach to Semantics , 2014, *SEMEVAL.

[17]  Pascual Martínez-Gómez,et al.  Building compositional semantics and higher-order inference system for a wide-coverage Japanese CCG parser , 2016, EMNLP.

[18]  Mark Steedman,et al.  Example Selection for Bootstrapping Statistical Parsers , 2003, NAACL.

[19]  Mark Steedman,et al.  Transforming Dependency Structures to Logical Forms for Semantic Parsing , 2016, TACL.

[20]  Yuji Matsumoto,et al.  A* CCG Parsing with a Supertag and Dependency Factored Model , 2017, ACL.

[21]  Katrin Erk,et al.  Representing Meaning with a Combination of Logical and Distributional Models , 2015, CL.

[22]  Gemma Boleda,et al.  UTexas: Natural Language Semantics using Distributional Semantics and Probabilistic Logic , 2014, *SEMEVAL.

[23]  Terence Parsons,et al.  Events in the Semantics of English: A Study in Subatomic Semantics , 1990 .

[24]  Chris Callison-Burch,et al.  Paraphrasing with Bilingual Parallel Corpora , 2005, ACL.

[25]  Yves Bertot,et al.  Interactive Theorem Proving and Program Development: Coq'Art The Calculus of Inductive Constructions , 2010 .

[26]  Pascual Martínez-Gómez,et al.  ccg2lambda: A Compositional Semantics System , 2016, ACL.

[27]  Lev Gordeev,et al.  Basic proof theory , 1998 .

[28]  Mark Steedman,et al.  Large-scale Semantic Parsing without Question-Answer Pairs , 2014, TACL.

[29]  Chris Callison-Burch,et al.  PPDB: The Paraphrase Database , 2013, NAACL.

[30]  Ming Zhou,et al.  Combining Multiple Resources to Improve SMT-based Paraphrasing Model , 2008, ACL.

[31]  Patrick Pantel,et al.  VerbOcean: Mining the Web for Fine-Grained Semantic Verb Relations , 2004, EMNLP.

[32]  Ido Dagan,et al.  Recognizing Textual Entailment: Models and Applications , 2013, Recognizing Textual Entailment: Models and Applications.

[33]  Naoaki Okazaki,et al.  Learning Semantically and Additively Compositional Distributional Representations , 2016, ACL.

[34]  Lasha Abzianidze,et al.  A Tableau Prover for Natural Logic and Language , 2015, EMNLP.

[35]  Malvina Nissim,et al.  The Meaning Factory: Formal Semantics for Recognizing Textual Entailment and Determining Semantic Similarity , 2014, *SEMEVAL.