The Morphological Identity of Insect Dendrites

Dendrite morphology, a neuron's anatomical fingerprint, is a neuroscientist's asset in unveiling organizational principles in the brain. However, the genetic program encoding the morphological identity of a single dendrite remains a mystery. In order to obtain a formal understanding of dendritic branching, we studied distributions of morphological parameters in a group of four individually identifiable neurons of the fly visual system. We found that parameters relating to the branching topology were similar throughout all cells. Only parameters relating to the area covered by the dendrite were cell type specific. With these areas, artificial dendrites were grown based on optimization principles minimizing the amount of wiring and maximizing synaptic democracy. Although the same branching rule was used for all cells, this yielded dendritic structures virtually indistinguishable from their real counterparts. From these principles we derived a fully-automated model-based neuron reconstruction procedure validating the artificial branching rule. In conclusion, we suggest that the genetic program implementing neuronal branching could be constant in all cells whereas the one responsible for the dendrite spanning field should be cell specific.

[1]  J. J. Capowski An automatic neuron reconstruction system , 1983, Journal of Neuroscience Methods.

[2]  B. Chen,et al.  The Molecular Diversity of Dscam Is Functionally Required for Neuronal Wiring Specificity in Drosophila , 2006, Cell.

[3]  W. Denk,et al.  Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure , 2004, PLoS biology.

[4]  M. Sokolowski,et al.  Drosophila: Genetics meets behaviour , 2001, Nature Reviews Genetics.

[5]  Tarinee Chaiwong,et al.  Ommatidia of blow fly, house fly, and flesh fly: implication of their vision efficiency , 2008, Parasitology Research.

[6]  T. Sejnowski,et al.  [Letters to nature] , 1996, Nature.

[7]  T. Sejnowski,et al.  Mapping function onto neuronal morphology. , 2007, Journal of neurophysiology.

[8]  C. Goodman Isogenic grasshoppers: Genetic variability in the morphology of identified neurons , 1978, The Journal of comparative neurology.

[9]  M. Heisenberg,et al.  Neurogenetics and Behaviour in Insects , 1984 .

[10]  K. Hausen Functional Characterization and Anatomical Identification of Motion Sensitive Neurons in the Lobula plate of the Blowfly Calliphora erythrocephala , 1976 .

[11]  Gilles Laurent,et al.  Testing Odor Response Stereotypy in the Drosophila Mushroom Body , 2008, Neuron.

[12]  Jaap van Pelt,et al.  Measures for quantifying dendritic arborizations , 2002, Network.

[13]  A. Borst,et al.  Neural mechanism underlying complex receptive field properties of motion-sensitive interneurons , 2004, Nature Neuroscience.

[14]  A. Borst,et al.  Dendro-Dendritic Interactions between Motion-Sensitive Large-Field Neurons in the Fly , 2002, The Journal of Neuroscience.

[15]  Nancy M Bonini,et al.  Drosophila as a model for human neurodegenerative disease. , 2005, Annual review of genetics.

[16]  Isabelle Bülthoff,et al.  Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement , 2004, Journal of Comparative Physiology A.

[17]  Michael D. Kim,et al.  Mechanisms that regulate establishment, maintenance, and remodeling of dendritic fields. , 2007, Annual review of neuroscience.

[18]  Jian Wang,et al.  Transmembrane/Juxtamembrane Domain-Dependent Dscam Distribution and Function during Mushroom Body Neuronal Morphogenesis , 2004, Neuron.

[19]  H. B. M. Uylings,et al.  The metric analysis of three-dimensional dendritic tree patterns: a methodological review , 1986, Journal of Neuroscience Methods.

[20]  Miratul M. K. Muqit,et al.  Modelling neurodegenerative diseases in Drosophila: a fruitful approach? , 2002, Nature Reviews Neuroscience.

[21]  Alexander Borst,et al.  How does Nature Program Neuron Types? , 2008, Front. Neurosci..

[22]  Hendrik Eckert,et al.  The centrifugal horizontal cells in the lobula plate of the blowfly, Phaenicia sericata , 1983 .

[23]  G A Ascoli,et al.  Progress and perspectives in computational neuroanatomy , 1999, The Anatomical record.

[24]  W. R. Ashby A Quantitative Analysis of the Structure of the Cerebral Cortex , 1937 .

[25]  Thomas Euler,et al.  Dendritic processing , 2001, Current Opinion in Neurobiology.

[26]  D. R. Myatt,et al.  Improved automatic midline tracing of neurites with Neuromantic , 2008, BMC Neuroscience.

[27]  John G. Flanagan,et al.  Development of Continuous and Discrete Neural Maps , 2007, Neuron.

[28]  K. Hausen Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[29]  E. Meyer,et al.  Insect optic lobe neurons identifiable with monoclonal antibodies to GABA , 2004, Histochemistry.

[30]  R. Hengstenberg Common visual response properties of giant vertical cells in the lobula plate of the blowflyCalliphora , 1982, Journal of comparative physiology.

[31]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[32]  Karl Georg Götz,et al.  Flight control in Drosophila by visual perception of motion , 1968, Kybernetik.

[33]  A. Pestronk Histology of the Nervous System of Man and Vertebrates , 1997, Neurology.

[34]  Michael Scholz,et al.  New methods for the computer-assisted 3-D reconstruction of neurons from confocal image stacks , 2004, NeuroImage.

[35]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[36]  G. Laurent,et al.  Role of GABAergic Inhibition in Shaping Odor-Evoked Spatiotemporal Patterns in the Drosophila Antennal Lobe , 2005, The Journal of Neuroscience.

[37]  Daisuke Hattori,et al.  Dscam-mediated cell recognition regulates neural circuit formation. , 2008, Annual review of cell and developmental biology.

[38]  Hanchuan Peng,et al.  Automatic reconstruction of 3D neuron structures using a graph-augmented deformable model , 2010, Bioinform..

[39]  R. C Cannon,et al.  An on-line archive of reconstructed hippocampal neurons , 1998, Journal of Neuroscience Methods.

[40]  R. Pierantoni,et al.  A look into the cock-pit of the fly , 1976, Cell and Tissue Research.

[41]  J. Chilton Molecular mechanisms of axon guidance. , 2006, Developmental biology.

[42]  A. Borst,et al.  Neural networks in the cockpit of the fly , 2002, Journal of Comparative Physiology A.

[43]  A. Borst,et al.  Fly motion vision. , 2010, Annual review of neuroscience.

[44]  Akira Chiba,et al.  RESPONSE PROPERTIES OF INTERNEURONS OF THE CRICKET CERCAL SENSORY SYSTEM ARE CONSERVED IN SPITE OF CHANGES IN PERIPHERAL RECEPTORS DURING MATURATION , 1992 .

[45]  A. Borst,et al.  Response Properties of Motion-Sensitive Visual Interneurons in the Lobula Plate of Drosophila melanogaster , 2008, Current Biology.

[46]  K. P. Rajashekhar,et al.  Golgi analysis of tangential neurons in the lobula plate ofDrosophila melanogaster , 2004, Journal of Biosciences.

[47]  J. C. Clemens,et al.  Drosophila Dscam Is an Axon Guidance Receptor Exhibiting Extraordinary Molecular Diversity , 2000, Cell.

[48]  R Hengstenberg,et al.  Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. , 1998, Journal of neurophysiology.

[49]  Dmitri B Chklovskii,et al.  A cost-benefit analysis of neuronal morphology. , 2008, Journal of neurophysiology.

[50]  James M. Bower,et al.  The Book of GENESIS , 1994, Springer New York.

[51]  J P Miller,et al.  Relationships between neuronal structure and function. , 1984, The Journal of experimental biology.

[52]  D. Chklovskii,et al.  Maps in the brain: what can we learn from them? , 2004, Annual review of neuroscience.

[53]  E M Glaser,et al.  Neuron imaging with Neurolucida--a PC-based system for image combining microscopy. , 1990, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[54]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[55]  H. Markram The Blue Brain Project , 2006, Nature Reviews Neuroscience.

[56]  Vitaly A Klyachko,et al.  Connectivity optimization and the positioning of cortical areas , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Idan Segev,et al.  Dendritic processing , 1998 .

[58]  M. Kondo,et al.  Homophilic Dscam Interactions Control Complex Dendrite Morphogenesis , 2007, Neuron.

[59]  Alexander Borst,et al.  Synapse distribution on VCH, an inhibitory, motion‐sensitive interneuron in the fly visual system , 1997, The Journal of comparative neurology.

[60]  W. Rall Branching dendritic trees and motoneuron membrane resistivity. , 1959, Experimental neurology.

[61]  Yu Cao,et al.  Activity-Independent Prespecification of Synaptic Partners in the Visual Map of Drosophila , 2006, Current Biology.

[62]  Marian DiFiglia,et al.  Neurobiotin™, a useful neuroanatomical tracer for in vivo anterograde, retrograde and transneuronal tract-tracing and for in vitro labeling of neurons , 1992, Journal of Neuroscience Methods.

[63]  Roman R. Poznanski Modeling in the Neurosciences: From Ionic Channels to Neural Networks , 1999 .

[64]  Alexander Borst,et al.  One Rule to Grow Them All: A General Theory of Neuronal Branching and Its Practical Application , 2010, PLoS Comput. Biol..

[65]  Frédéric E. Theunissen,et al.  NeMoSys: A System for Realistic Single Neuron Modeling , 1994 .

[66]  A. Borst,et al.  Eigenanalysis of a neural network for optic flow processing , 2008 .

[67]  J. C. Clemens,et al.  Analysis of Dscam Diversity in Regulating Axon Guidance in Drosophila Mushroom Bodies , 2004, Neuron.

[68]  D. H. Edwards,et al.  Uniform growth and neuronal integration. , 1996, Journal of neurophysiology.

[69]  Adam Mann Teams battle for neuron prize , 2010, Nature.

[70]  G. Ascoli,et al.  NeuroMorpho.Org: A Central Resource for Neuronal Morphologies , 2007, The Journal of Neuroscience.

[71]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[72]  Gilles Laurent,et al.  Transformation of Olfactory Representations in the Drosophila Antennal Lobe , 2004, Science.

[73]  G. Ascoli Computational Neuroanatomy , 2002, Humana Press.

[74]  B. Matthews,et al.  Molecules and mechanisms of dendrite development in Drosophila , 2009, Development.

[75]  Alexander Borst,et al.  Synaptic organization of lobula plate tangential cells in Drosophila: γ‐Aminobutyric acid receptors and chemical release sites , 2007, The Journal of comparative neurology.

[76]  Stephan J. Sigrist,et al.  Structural Long-Term Changes at Mushroom Body Input Synapses , 2010, Current Biology.

[77]  Leslie B. Vosshall,et al.  Axonal Targeting of Olfactory Receptor Neurons in Drosophila Is Controlled by Dscam , 2003, Neuron.

[78]  Jaap van Pelt and Harry B.M. Uylings Natural Variability in the Geometry of Dendritic Branching Patterns , 2005 .

[79]  D. Schmucker,et al.  Molecular diversity of Dscam: recognition of molecular identity in neuronal wiring , 2007, Nature Reviews Neuroscience.

[80]  Idan Segev,et al.  The morphoelectrotonic transform: a graphical approach to dendritic function , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[81]  Kaoru Sugimura,et al.  Self-organizing Mechanism for Development of Space-filling Neuronal Dendrites , 2007, PLoS Comput. Biol..

[82]  Nathan W. Gouwens,et al.  Signal Propagation in Drosophila Central Neurons , 2009, The Journal of Neuroscience.

[83]  R. Hardie Functional Organization of the Fly Retina , 1985 .

[84]  Giorgio A. Ascoli,et al.  Algorithmic Extraction of Morphological Statistics from Electronic Archives of Neuroanatomy , 2001, IWANN.

[85]  B Mulloney,et al.  Compartmental models of electrotonic structure and synaptic integration in an identified neurone. , 1984, The Journal of physiology.

[86]  A Borst,et al.  Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Alexander Borst,et al.  Neural image processing by dendritic networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[88]  K J Staley,et al.  Membrane properties of dentate gyrus granule cells: comparison of sharp microelectrode and whole-cell recordings. , 1992, Journal of neurophysiology.

[89]  Alexander Borst,et al.  Synaptic Organization of Lobula Plate Tangential Cells in Drosophila: Dα7 Cholinergic Receptors , 2009, Journal of neurogenetics.

[90]  P. Saggau,et al.  Towards automatic reconstruction of dendrite morphology from live neurons , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[91]  H. Haug History of neuromorphometry , 1986, Journal of Neuroscience Methods.

[92]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[93]  E. Marder,et al.  Variability, compensation and homeostasis in neuron and network function , 2006, Nature Reviews Neuroscience.

[94]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[95]  M. Berry,et al.  Network analysis of dendritic fields of pyramidal cells in neocortex and Purkinje cells in the cerebellum of the rat. , 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[96]  C. Levinthal,et al.  Three-dimensional computer reconstruction of neurons and neuronal assemblies. , 1979, Annual review of biophysics and bioengineering.

[97]  Jeffrey L. Krichmar,et al.  Computer generation and quantitative morphometric analysis of virtual neurons , 2001, Anatomy and Embryology.

[98]  J F Evers,et al.  Progress in functional neuroanatomy: precise automatic geometric reconstruction of neuronal morphology from confocal image stacks. , 2005, Journal of neurophysiology.

[99]  K. Harris,et al.  Ultrastructural Analysis of Hippocampal Neuropil from the Connectomics Perspective , 2010, Neuron.

[100]  A. Borst Drosophila's View on Insect Vision , 2009, Current Biology.

[101]  Alexander Borst,et al.  The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties , 1996, Journal of Computational Neuroscience.

[102]  A. M. Smith,et al.  A century after cajal. , 1993, Science.

[103]  R. Angus Silver,et al.  neuroConstruct: A Tool for Modeling Networks of Neurons in 3D Space , 2007, Neuron.

[104]  Alexander Borst,et al.  Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons , 2009, Nature Neuroscience.

[105]  T. Narahashi,et al.  Electrical properties of the cockroach giant axon , 1959 .

[106]  Fabrizio Gabbiani,et al.  Precise Subcellular Input Retinotopy and Its Computational Consequences in an Identified Visual Interneuron , 2009, Neuron.

[107]  C. Sotelo,et al.  Viewing the brain through the master hand of Ramon y Cajal , 2003, Nature Reviews Neuroscience.

[108]  D. Tank,et al.  Dendritic Integration in Mammalian Neurons, a Century after Cajal , 1996, Neuron.

[109]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[110]  Tim Gollisch,et al.  Modeling Single-Neuron Dynamics and Computations: A Balance of Detail and Abstraction , 2006, Science.

[111]  Karl-Friedrich Fischbach,et al.  Optic lobe development. , 2008, Advances in experimental medicine and biology.

[112]  Alexander Borst,et al.  Integration of Lobula Plate Output Signals by DNOVS1, an Identified Premotor Descending Neuron , 2007, The Journal of Neuroscience.

[113]  G. Stuart,et al.  Direct measurement of specific membrane capacitance in neurons. , 2000, Biophysical journal.

[114]  Kei Ito,et al.  Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula‐specific pathways , 2006, The Journal of comparative neurology.

[115]  Idan Segev,et al.  Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons , 2007, Proceedings of the National Academy of Sciences.

[116]  B Schnell,et al.  Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. , 2010, Journal of neurophysiology.

[117]  R. K. Murphey,et al.  Maturation of an insect nervous system: Constancy in the face of change , 1994 .

[118]  N. J. Strausfeld,et al.  Functional Neuroanatomy of the Blowfly’s Visual System , 1984 .

[119]  Péter Buzás,et al.  Neocortical Axon Arbors Trade-off Material and Conduction Delay Conservation , 2010, PLoS Comput. Biol..

[120]  Liqun Luo,et al.  Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila , 2002, The Journal of comparative neurology.

[121]  Nobuyuki Matsui,et al.  Reconstruction and simulation for three-dimensional morphological structure of insect neurons , 2006, Neurocomputing.

[122]  F. G. Worden,et al.  The neurosciences : fourth study program , 1979 .

[123]  M Egelhaaf,et al.  Processing of synaptic information depends on the structure of the dendritic tree , 1994, Neuroreport.

[124]  G. Shepherd,et al.  Geometric and functional organization of cortical circuits , 2005, Nature Neuroscience.

[125]  Christof Koch,et al.  The role of single neurons in information processing , 2000, Nature Neuroscience.

[126]  Dmitri B Chklovskii,et al.  Synaptic Connectivity and Neuronal Morphology Two Sides of the Same Coin , 2004, Neuron.