Differential proteomic analysis of a polymicrobial biofilm.

Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia exist in a polymicrobial biofilm associated with chronic periodontitis. The aim of this study was to culture these three species as a polymicrobial biofilm and to determine proteins important for bacterial interactions. In a flow cell all three species attached and grew as a biofilm; however, after 90 h of culture P. gingivalis and T. denticola were closely associated and dominated the polymicrobial biofilm. For comparison, planktonic cultures of P. gingivalis and T. denticola were grown separately in continuous culture. Whole cell lysates were subjected to SDS-PAGE, followed by in-gel proteolytic H₂¹⁶O/H₂¹⁸O labeling. From two replicates, 135 and 174 P. gingivalis proteins and 134 and 194 T. denticola proteins were quantified by LC-MALDI TOF/TOF MS. The results suggest a change of strategy in iron acquisition by P. gingivalis due to large increases in the abundance of HusA and HusB in the polymicrobial biofilm while HmuY and other iron/haem transport systems decreased. Significant changes in the abundance of peptidases and enzymes involved in glutamate and glycine catabolism suggest syntrophy. These data indicate an intimate association between P. gingivalis and T. denticola in a biofilm that may play a role in disease pathogenesis.

[1]  Y. Abiko,et al.  Profiling of subgingival plaque biofilm microflora from periodontally healthy subjects and from subjects with periodontitis using quantitative real-time PCR. , 2010, Journal of periodontal research.

[2]  Josselin Noirel,et al.  A quantitative proteomic analysis of biofilm adaptation by the periodontal pathogen Tannerella forsythia , 2010, Proteomics.

[3]  H. V. D. van der Heide,et al.  Characterization of the 35-kilodalton Treponema pallidum subsp. pallidum recombinant lipoprotein TmpC and antibody response to lipidated and nonlipidated T. pallidum antigens , 1991, Infection and immunity.

[4]  P. Veith,et al.  Application of 16O/18O reverse proteolytic labeling to determine the effect of biofilm culture on the cell envelope proteome of Porphyromonas gingivalis W50 , 2008, Proteomics.

[5]  S. Holt,et al.  Cloning and Expression of Two Novel Hemin Binding Protein Genes from Treponema denticola , 2001, Infection and Immunity.

[6]  D. Grenier Nutritional interactions between two suspected periodontopathogens, Treponema denticola and Porphyromonas gingivalis , 1992, Infection and immunity.

[7]  H. Hirakawa,et al.  A protein secretion system linked to bacteroidete gliding motility and pathogenesis , 2009, Proceedings of the National Academy of Sciences.

[8]  H. Kuramitsu,et al.  Synergy between Tannerella forsythia and Fusobacterium nucleatum in biofilm formation. , 2005, Oral microbiology and immunology.

[9]  P. Veith,et al.  Major outer membrane proteins and proteolytic processing of RgpA and Kgp of Porphyromonas gingivalis W50. , 2002, The Biochemical journal.

[10]  Jinlong Gao,et al.  Characterization of a Hemophore-like Protein from Porphyromonas gingivalis* , 2010, The Journal of Biological Chemistry.

[11]  A. Gooley,et al.  Extraction of Escherichia coli proteins with organic solvents prior to two‐dimensional electrophoresis , 1999, Electrophoresis.

[12]  M. Wagner,et al.  Fluorescence in situ hybridization shows spatial distribution of as yet uncultured treponemes in biopsies from digital dermatitis lesions. , 1998, Microbiology.

[13]  F. Dewhirst,et al.  Bacterial Diversity in Human Subgingival Plaque , 2001, Journal of bacteriology.

[14]  G. Robertson,et al.  Bacterial and fungal biofilm infections. , 2008, Annual review of medicine.

[15]  N. Slakeski,et al.  A Porphyromonas gingivalis genetic locus encoding a heme transport system. , 2000, Oral microbiology and immunology.

[16]  D. Hájková,et al.  pH dependency of the carboxyl oxygen exchange reaction catalyzed by lysyl endopeptidase and trypsin. , 2006, Journal of proteome research.

[17]  J. Redondo,et al.  A Robust Method for Quantitative High-throughput Analysis of Proteomes by 18O Labeling* , 2011, Molecular & Cellular Proteomics.

[18]  B. Christensen,et al.  Distribution of Bacterial Growth Activity in Flow-Chamber Biofilms , 1999, Applied and Environmental Microbiology.

[19]  J. Redondo,et al.  Statistical Model to Analyze Quantitative Proteomics Data Obtained by 18O/16O Labeling and Linear Ion Trap Mass Spectrometry , 2009, Molecular & Cellular Proteomics.

[20]  C. Seers,et al.  Comparative transcriptomic analysis of Porphyromonas gingivalis biofilm and planktonic cells , 2009, BMC Microbiology.

[21]  S. Socransky,et al.  Comparison of the microbiota of supra- and subgingival plaque in health and periodontitis. , 2000, Journal of clinical periodontology.

[22]  T. Nyström,et al.  The bacterial universal stress protein: function and regulation. , 2003, Current opinion in microbiology.

[23]  A. Gerber,et al.  Recombinant Treponema pallidum antigens in syphilis serology. , 1997, Immunobiology.

[24]  I. Barr,et al.  Vaccination with recombinant adhesins from the RgpA-Kgp proteinase-adhesin complex protects against Porphyromonas gingivalis infection. , 2006, Vaccine.

[25]  Yasushi Ishihama,et al.  Proteomic LC-MS systems using nanoscale liquid chromatography with tandem mass spectrometry. , 2005, Journal of chromatography. A.

[26]  Paul Stoodley,et al.  Bacterial biofilms: from the Natural environment to infectious diseases , 2004, Nature Reviews Microbiology.

[27]  G. Weinstock,et al.  Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  T. Takehara,et al.  Site-specific development of periodontal disease is associated with increased levels of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia in subgingival plaque. , 2008, Journal of periodontology.

[29]  C. Anaya,et al.  Transcriptional organization, regulation and role of the Porphyromonas gingivalis W83 hmu haemin-uptake locus. , 2006, Microbiology.

[30]  P. Veith,et al.  Characterization of proteinase-adhesin complexes of Porphyromonas gingivalis. , 2006, Microbiology.

[31]  N. Park,et al.  Motility and Chemotaxis in Tissue Penetration of Oral Epithelial Cell Layers by Treponema denticola , 2001, Infection and Immunity.

[32]  T. Olczak,et al.  Species specificity, surface exposure, protein expression, immunogenicity, and participation in biofilm formation of Porphyromonas gingivalis HmuY , 2010, BMC Microbiology.

[33]  R. Lange,et al.  Development of quasi-multicellular bodies of Treponema denticola , 1993, Archives of Microbiology.

[34]  C. Kojima,et al.  Solution structure of the peptidoglycan binding domain of Bacillus subtilis cell wall lytic enzyme CwlC: characterization of the sporulation-related repeats by NMR. , 2005, Biochemistry.

[35]  U. Göbel,et al.  Fluorescence in situ hybridization (FISH) for direct visualization of bacteria in periapical lesions of asymptomatic root-filled teeth. , 2003, Microbiology.

[36]  H. Kuramitsu,et al.  Contact-dependent regulation of a Tannerella forsythia virulence factor, BspA, in biofilms. , 2005, FEMS microbiology letters.

[37]  N. Slakeski,et al.  Role of RgpA, RgpB, and Kgp Proteinases in Virulence of Porphyromonas gingivalis W50 in a Murine Lesion Model , 2001, Infection and Immunity.

[38]  M. Sanz,et al.  Structure, viability and bacterial kinetics of an in vitro biofilm model using six bacteria from the subgingival microbiota. , 2011, Journal of periodontal research.

[39]  P. Veith,et al.  Major proteins and antigens of Treponema denticola. , 2009, Biochimica et biophysica acta.

[40]  Takuichi Sato,et al.  Metabolic Pathways for Cytotoxic End Product Formation from Glutamate- and Aspartate-Containing Peptides byPorphyromonas gingivalis , 2000, Journal of bacteriology.

[41]  B. Ersbøll,et al.  Quantification of biofilm structures by the novel computer program COMSTAT. , 2000, Microbiology.

[42]  Y. Liu,et al.  Alkyl hydroperoxide peroxidase subunit C (ahpC) protects against organic peroxides but does not affect the virulence of Porphyromonas gingivalis W83. , 2004, Oral microbiology and immunology.

[43]  H. Kuramitsu,et al.  A universal stress protein of Porphyromonas gingivalis is involved in stress responses and biofilm formation. , 2006, FEMS microbiology letters.

[44]  I. Barr,et al.  Response of Porphyromonas gingivalis to Heme Limitation in Continuous Culture , 2008, Journal of bacteriology.

[45]  H. Kuramitsu,et al.  Synergistic biofilm formation by Treponema denticola and Porphyromonas gingivalis. , 2005, FEMS microbiology letters.

[46]  S. Dashper,et al.  Synergistic virulence of Porphyromonas gingivalis and Treponema denticola in a murine periodontitis model. , 2011, Molecular oral microbiology.

[47]  M. E. Davey,et al.  Enhanced Biofilm Formation and Loss of Capsule Synthesis: Deletion of a Putative Glycosyltransferase in Porphyromonas gingivalis , 2006, Journal of bacteriology.

[48]  Françoise Argoul,et al.  Mechanics of the IL2RA Gene Activation Revealed by Modeling and Atomic Force Microscopy , 2011, PloS one.

[49]  T. T. To,et al.  The Lipid A Phosphate Position Determines Differential Host Toll-Like Receptor 4 Responses to Phylogenetically Related Symbiotic and Pathogenic Bacteria , 2010, Infection and Immunity.

[50]  D. Kolodrubetz,et al.  Construction and analysis of hemin binding protein mutants in the oral pathogen Treponema denticola. , 2002, Research in microbiology.

[51]  G. Svensäter,et al.  Protein expression by planktonic and biofilm cells of Streptococcus mutans. , 2001, FEMS microbiology letters.

[52]  M. Gray,et al.  Selective Sorting of Cargo Proteins into Bacterial Membrane Vesicles* , 2010, The Journal of Biological Chemistry.

[53]  C. Walker,et al.  An in vitro biofilm model of subgingival plaque. , 2007, Oral microbiology and immunology.

[54]  Wen-Han Yu,et al.  The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information , 2010, Database J. Biol. Databases Curation.

[55]  T. Olczak,et al.  Unique Structure and Stability of HmuY, a Novel Heme-Binding Protein of Porphyromonas gingivalis , 2009, PLoS pathogens.

[56]  C. Seers,et al.  The RgpB C-Terminal Domain Has a Role in Attachment of RgpB to the Outer Membrane and Belongs to a Novel C-Terminal-Domain Family Found in Porphyromonas gingivalis , 2006, Journal of bacteriology.

[57]  C. Sissons Artificial Dental Plaque Biofilm Model Systems , 1997, Advances in dental research.

[58]  J. Costerton,et al.  Pseudomonas aeruginosa Displays Multiple Phenotypes during Development as a Biofilm , 2002, Journal of bacteriology.

[59]  A. Böck,et al.  Selenium-dependent growth of Treponema denticola: evidence for a clostridial-type glycine reductase , 2001, Archives of Microbiology.

[60]  John D Lambris,et al.  Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. , 2011, Cell host & microbe.

[61]  N. Slakeski,et al.  Treponema denticola biofilm-induced expression of a bacteriophage, toxin-antitoxin systems and transposases. , 2010, Microbiology.

[62]  I. Barr,et al.  Characterization of a Novel Outer Membrane Hemin-Binding Protein of Porphyromonas gingivalis , 2000, Journal of bacteriology.

[63]  S. Sathishkumar,et al.  Rat Model of Polymicrobial Infection, Immunity, and Alveolar Bone Resorption in Periodontal Disease , 2007, Infection and Immunity.

[64]  A. Roberts,et al.  Genetic basis of horizontal gene transfer among oral bacteria. , 2006, Periodontology 2000.

[65]  P. Marsh Dental plaque: biological significance of a biofilm and community life-style. , 2005, Journal of clinical periodontology.

[66]  P. Marsh,et al.  Dental Plaque as a Microbial Biofilm , 2004, Caries Research.

[67]  E. Krause,et al.  Relative quantification of erythropoietin receptor-dependent phosphoproteins using in-gel 18O-labeling and tandem mass spectrometry. , 2005, Rapid communications in mass spectrometry : RCM.

[68]  P. Veith,et al.  An Immune Response Directed to Proteinase and Adhesin Functional Epitopes Protects against Porphyromonas gingivalis-Induced Periodontal Bone Loss1 , 2005, The Journal of Immunology.

[69]  K. Goldie,et al.  The outer membrane protein LptO is essential for the O‐deacylation of LPS and the co‐ordinated secretion and attachment of A‐LPS and CTD proteins in Porphyromonas gingivalis , 2011, Molecular microbiology.

[70]  M. A. Curtis,et al.  Molecular genetics and nomenclature of proteases of Porphyromonas gingivalis. , 1999, Journal of periodontal research.

[71]  M. Marko,et al.  Genetic Analysis of Spirochete Flagellin Proteins and Their Involvement in Motility, Filament Assembly, and Flagellar Morphology , 2008, Journal of bacteriology.

[72]  S. Socransky,et al.  Microbial complexes in subgingival plaque. , 1998, Journal of clinical periodontology.

[73]  K. Nielsen,et al.  Bacterial diversity in faeces from polar bear (Ursus maritimus) in Arctic Svalbard , 2010, BMC Microbiology.

[74]  H. Shah,et al.  Utilization of glucose and amino acids byBacteroides intermedius andBacteroides gingivalis , 1987, Current Microbiology.

[75]  M. E. Davey Techniques for the growth of Porphyromonas gingivalis biofilms. , 2006, Periodontology 2000.

[76]  M. Sakamoto,et al.  Rapid Detection and Quantification of Five Periodontopathic Bacteria by Real‐Time PCR , 2001, Microbiology and immunology.

[77]  R. Lamont,et al.  Proteomics of Porphyromonas gingivalis within a model oral microbial community , 2009, BMC Microbiology.

[78]  M. Sal,et al.  Spirochete periplasmic flagella and motility. , 2000, Journal of molecular microbiology and biotechnology.

[79]  S. Dashper,et al.  Progression of chronic periodontitis can be predicted by the levels of Porphyromonas gingivalis and Treponema denticola in subgingival plaque. , 2009, Oral microbiology and immunology.

[80]  N. Slakeski,et al.  Sodium Ion-Driven Serine/Threonine Transport in Porphyromonas gingivalis , 2001, Journal of bacteriology.

[81]  S. Dashper,et al.  An efficient method for enumerating oral spirochetes using flow cytometry. , 2010, Journal of microbiological methods.

[82]  Ji-Hyun Shin,et al.  Proteomic analysis of Acinetobacter baumannii in biofilm and planktonic growth mode , 2009, The Journal of Microbiology.

[83]  H. Kuramitsu,et al.  Biofilm Formation by the Periodontopathic Bacteria Treponema denticola and Porphyromonas gingivalis. , 2005, Journal of periodontology.

[84]  R. Twigg,et al.  Oxidation-Reduction Aspects of Resazurin , 1945, Nature.

[85]  P. Kolenbrander,et al.  Oral microbial communities: biofilms, interactions, and genetic systems. , 2000, Annual review of microbiology.

[86]  K. Buttle,et al.  Relationship of Treponema denticola periplasmic flagella to irregular cell morphology , 1997, Journal of bacteriology.

[87]  Alfred Nordheim,et al.  Comparative proteome analysis of Staphylococcus aureus biofilm and planktonic cells and correlation with transcriptome profiling , 2006, Proteomics.

[88]  Jenn-Kang Hwang,et al.  Prediction of protein subcellular localization , 2006, Proteins.

[89]  R. Di Cagno,et al.  Quorum sensing in sourdough Lactobacillus plantarum DC400: Induction of plantaricin A (PlnA) under co‐cultivation with other lactic acid bacteria and effect of PlnA on bacterial and Caco‐2 cells , 2010, Proteomics.

[90]  J. Oliver The viable but nonculturable state in bacteria. , 2005, Journal of microbiology.

[91]  G. Kurzban,et al.  Cystalysin, a 46-kilodalton cysteine desulfhydrase from Treponema denticola, with hemolytic and hemoxidative activities , 1997, Infection and immunity.