A projection technique for incompressible flow in the meshless finite volume particle method
暂无分享,去创建一个
[1] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .
[2] J. Monaghan. Smoothed particle hydrodynamics , 2005 .
[3] R. Klein,et al. Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows , 2000 .
[4] A. Chorin. Numerical solution of the Navier-Stokes equations , 1968 .
[5] Philip M. Gresho,et al. On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .
[6] K. Steiner,et al. A FINITE-VOLUME PARTICLE METHOD FOR COMPRESSIBLE FLOWS , 2000 .
[7] R. Klein. Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .
[8] Harry Yserentant,et al. The Finite Mass Method , 2000, SIAM J. Numer. Anal..
[9] Rupert Klein,et al. Regular Article: Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows , 1999 .
[10] J. Marsden,et al. A mathematical introduction to fluid mechanics , 1979 .
[11] M. Junk,et al. The Finite-Volume-Particle Method for Conservation Laws , 2001 .
[12] Dietmar Hietel,et al. Consistency by Coefficient-Correction in the Finite-Volume-Particle Method , 2003 .
[13] J. Kuhnert,et al. Finite Pointset Method Based on the Projection Method for Simulations of the Incompressible Navier-Stokes Equations , 2003 .
[14] John B. Bell,et al. A Numerical Method for the Incompressible Navier-Stokes Equations Based on an Approximate Projection , 1996, SIAM J. Sci. Comput..
[15] T. Sonar. Multivariate Rekonstruktionsverfahren zur numerischen Berechnung hyperbolischer Erhaltungsgleichungen , 1995 .
[16] Michael Griebel,et al. A Particle-Partition of Unity Method for the Solution of Elliptic, Parabolic, and Hyperbolic PDEs , 2000, SIAM J. Sci. Comput..