A projection technique for incompressible flow in the meshless finite volume particle method

Abstract The finite volume particle method is a meshless discretization technique, which generalizes the classical finite volume method by using smooth, overlapping and moving test functions applied in the weak formulation of the conservation law. The method was originally developed for hyperbolic conservation laws so that the compressible Euler equations particularly apply. In the present work we analyze the discretization error and enforce consistency by a new set of geometrical quantities. Furthermore, we introduce a discrete Laplace operator for the scheme in order to extend the method to second order partial differential equations. Finally, we transfer Chorin’s projection technique to the finite volume particle method in order to obtain a meshless scheme for incompressible flow.

[1]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[2]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[3]  R. Klein,et al.  Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows , 2000 .

[4]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[5]  Philip M. Gresho,et al.  On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .

[6]  K. Steiner,et al.  A FINITE-VOLUME PARTICLE METHOD FOR COMPRESSIBLE FLOWS , 2000 .

[7]  R. Klein Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .

[8]  Harry Yserentant,et al.  The Finite Mass Method , 2000, SIAM J. Numer. Anal..

[9]  Rupert Klein,et al.  Regular Article: Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows , 1999 .

[10]  J. Marsden,et al.  A mathematical introduction to fluid mechanics , 1979 .

[11]  M. Junk,et al.  The Finite-Volume-Particle Method for Conservation Laws , 2001 .

[12]  Dietmar Hietel,et al.  Consistency by Coefficient-Correction in the Finite-Volume-Particle Method , 2003 .

[13]  J. Kuhnert,et al.  Finite Pointset Method Based on the Projection Method for Simulations of the Incompressible Navier-Stokes Equations , 2003 .

[14]  John B. Bell,et al.  A Numerical Method for the Incompressible Navier-Stokes Equations Based on an Approximate Projection , 1996, SIAM J. Sci. Comput..

[15]  T. Sonar Multivariate Rekonstruktionsverfahren zur numerischen Berechnung hyperbolischer Erhaltungsgleichungen , 1995 .

[16]  Michael Griebel,et al.  A Particle-Partition of Unity Method for the Solution of Elliptic, Parabolic, and Hyperbolic PDEs , 2000, SIAM J. Sci. Comput..