Microstructure Noise in the Continuous Case: The Pre-Averaging Approach - JLMPV-9

This paper presents a generalized pre-averaging approach for estimating the integrated volatility. This approach also provides consistent estimators of other powers of volatility - in particular, it gives feasible ways to consistently estimate the asymptotic variance of the estimator of the integrated volatility. We show that our approach, which possess an intuitive transparency, can generate rate optimal estimators (with convergence rate n-1/4).

[1]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[2]  Jeffrey R. Russell,et al.  Separating Microstructure Noise from Volatility , 2004 .

[3]  Nour Meddahi,et al.  BOOTSTRAPPING REALIZED VOLATILITY , 2009 .

[4]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[5]  S. Johansen Some Identification Problems in the Cointegrated Vector Autoregressive Model , 2007 .

[6]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[7]  Peter F. Christoffersen,et al.  Models for S&P 500 Dynamics: Evidence from Realized Volatility, Daily Returns, and Option Prices , 2007 .

[8]  N. Shephard,et al.  Power and bipower variation with stochastic volatility and jumps , 2003 .

[9]  Yingying Li,et al.  Are Volatility Estimators Robust with Respect to Modeling Assumptions? , 2007, 0709.0440.

[10]  S. Johansen,et al.  Selecting a Regression Saturated by Indicators , 2007 .

[11]  R. Gencay,et al.  An Introduc-tion to High-Frequency Finance , 2001 .

[12]  T. Bollerslev,et al.  Intraday periodicity and volatility persistence in financial markets , 1997 .

[13]  S. Johansen,et al.  Exact Rational Expectations, Cointegration, and Reduced Rank Regression , 2007 .

[14]  Lan Zhang Efficient Estimation of Stochastic Volatility Using Noisy Observations: A Multi-Scale Approach , 2004, math/0411397.

[15]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[16]  P. Mykland,et al.  Comment: A Selective Overview of Nonparametric Methods in Financial Econometrics , 2005 .

[17]  Mark Podolskij,et al.  Estimation of Volatility Functionals in the Simultaneous Presence of Microstructure Noise and Jumps , 2006 .

[18]  Dean P. Foster,et al.  Continuous Record Asymptotics for Rolling Sample Variance Estimators , 1994 .

[19]  P. Mykland,et al.  Discussion of paper "A selective overview of nonparametric methods in financial econometrics" by Jianqing Fan , 2005 .

[20]  Jean Jacod,et al.  Asymptotic properties of realized power variations and related functionals of semimartingales , 2006, math/0604450.

[21]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[22]  Neil Shephard,et al.  Designing Realised Kernels to Measure the Ex-Post Variation of Equity Prices in the Presence of Noise , 2008 .

[23]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[24]  Jean Jacod,et al.  Diffusions with measurement errors. II. Optimal estimators , 2001 .

[25]  P. Protter,et al.  Asymptotic error distributions for the Euler method for stochastic differential equations , 1998 .

[26]  Joel Hasbrouck,et al.  Assessing the Quality of a Security Market: A New Approach to Transaction-Cost Measurement , 1993 .

[27]  Lan Zhang,et al.  From martingales to ANOVA : implied and realized volatility , 2001 .

[28]  Anders Rahbek,et al.  Likelihood-Based Inference in Nonlinear Error-Correction Models , 2007 .

[29]  N. Shephard,et al.  Econometric analysis of realised volatility and its use in estimating stochastic volatility models , 2000 .

[30]  S. Delattre,et al.  A central limit theorem for normalized functions of the increments of a diffusion process, in the presence of round-off errors , 1997 .

[31]  B. Christensen,et al.  Market Power in Power Markets: Evidence from Forward Prices of Electricity , 2007 .

[32]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .

[33]  S. Johansen,et al.  Correlation, Regression, and Cointegration of Nonstationary Economic Time Series , 2007 .

[34]  E. Ghysels,et al.  A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation , 2000 .

[35]  Robert F. Engle,et al.  The Econometrics of Ultra-High Frequency Data , 1996 .

[36]  Power variation for Gaussian processes with stationary increments , 2009 .

[37]  J. Jacod,et al.  La Variation Quadratique du Brownien en Pre'sence d''Erreurs d''Arrondi , 1996 .

[38]  A. Gallant,et al.  Using Daily Range Data to Calibrate Volatility Diffusions and Extract the Forward Integrated Variance , 1999, Review of Economics and Statistics.

[39]  Tom Engsted,et al.  Habit Formation, Surplus Consumption and Return Predictability: International Evidence , 2009 .

[40]  Ilze Kalnina,et al.  Inference About Realized Volatility Using Infill Subsampling , 2007 .

[41]  Yacine Ait-Sahalia,et al.  How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise , 2003 .