A Downward Translation in the Polynomial Hierarchy

Downward collapse (a.k.a. upward separation) refers to cases where the equality of two larger classes implies the equality of two smaller classes. We provide an unqualified downward collapse result completely within the polynomial hierarchy. In particular, we prove that, for k < 2, if P^{\sum^p_k[1]} = P^{\sum^p_k[2]} then \sum^p_k = \prod^p_k = PH. We extend this to obtain a more general downward collapse result.

[1]  Gerd Wechsung,et al.  On the Boolean closure of NP , 1985, FCT.

[2]  Eric Allender,et al.  Downward Translations of Equality , 1990, Theor. Comput. Sci..

[3]  Ker-I Ko,et al.  Some Observations on the Probabilistic Algorithms and NP-hard Problems , 1982, Inf. Process. Lett..

[4]  Paul Young,et al.  Strong Separations for the Boolean Hierarchy over RP , 1990, Int. J. Found. Comput. Sci..

[5]  Alberto Bertoni,et al.  Generalized Boolean Hierarchies and Boolean Hierarchies Over RP (Conference Abstract) , 1989, FCT.

[6]  Lane A. Hemaspaandra,et al.  Worlds to die for , 1995, SIGA.

[7]  Jörg Rothe,et al.  Upward Separation for FewP and Related Classes , 1994, Inf. Process. Lett..

[8]  Richard Chang,et al.  On the Structure of NP Computations under Boolean Operators , 1991 .

[9]  Juris Hartmanis,et al.  Computation Times of NP Sets of Different Densities , 1983, ICALP.

[10]  Lance Fortnow,et al.  Two Queries , 1999, J. Comput. Syst. Sci..

[11]  Ker-I Ko Relativized Polynomial Time Hierarchies Having Exactly K Levels , 1989, SIAM J. Comput..

[12]  Richard Chang,et al.  The Boolean Hierarchy and the Polynomial Hierarchy: A Closer Connection , 1996, SIAM J. Comput..

[13]  Mark W. Krentel The complexity of optimization problems , 1986, STOC '86.

[14]  Klaus W. Wagner,et al.  The Difference and Truth-Table Hierarchies for NP , 1987, RAIRO Theor. Informatics Appl..

[15]  Jörg Rothe,et al.  Easy sets and hard certificate schemes , 1995, Acta Informatica.

[16]  Juris Hartmanis,et al.  The Boolean Hierarchy I: Structural Properties , 1988, SIAM J. Comput..

[17]  Lane A. Hemaspaandra,et al.  Defying Upward and Downward Separation , 1993, Inf. Comput..

[18]  Jörg Rothe,et al.  Unambiguous Computation: Boolean Hierarchies and Sparse Turing-Complete Sets , 1997, SIAM J. Comput..

[19]  Neil Immerman,et al.  Sparse sets in NP-P: Exptime versus nexptime , 1983, STOC.

[20]  Juris Hartmanis,et al.  The Boolean Hierarchy II: Applications , 1989, SIAM J. Comput..

[21]  Noam Nisan,et al.  BPP has subexponential time simulations unless EXPTIME has publishable proofs , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[22]  Eric Allender,et al.  The Complexity of Sparse Sets in P , 1986, SCT.

[23]  Ronald V. Book,et al.  Tally Languages and Complexity Classes , 1974, Inf. Control..