SQ2P, Sequential Quadratic Constrained Quadratic Programming

We follow the popular approach for unconstrained minimization, i.e. we develop a local quadratic model at a current approximate minimizer in conjunction with a trust region. We then minimize this local model in order to find the next approximate minimizer. Asymptotically, finding the local minimizer of the quadratic model is equivalent to applying Newton’s method to the stationarity condition.

[1]  G. R. Walsh,et al.  Methods Of Optimization , 1976 .

[2]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[3]  Shih-Ping Han A globally convergent method for nonlinear programming , 1975 .

[4]  M. J. D. Powell,et al.  Algorithms for nonlinear constraints that use lagrangian functions , 1978, Math. Program..

[5]  David M. author-Gay Computing Optimal Locally Constrained Steps , 1981 .

[6]  Philip E. Gill,et al.  Practical optimization , 1981 .

[7]  Andrew R. Conn,et al.  Nonlinear programming via an exact penalty function: Asymptotic analysis , 1982, Math. Program..

[8]  Richard H. Byrd,et al.  A Family of Trust Region Based Algorithms for Unconstrained Minimization with Strong Global Convergence Properties. , 1985 .

[9]  D. Sorensen Newton's method with a model trust region modification , 1982 .

[10]  Lamberto Cesari,et al.  Optimization-Theory And Applications , 1983 .

[11]  Jorge J. Moré,et al.  Computing a Trust Region Step , 1983 .

[12]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[13]  Richard A. Tapia,et al.  A trust region strategy for nonlinear equality constrained op-timization , 1984 .

[14]  A. Vardi A Trust Region Algorithm for Equality Constrained Minimization: Convergence Properties and Implementation , 1985 .

[15]  J. Stoer Principles of Sequential Quadratic Programming Methods for Solving Nonlinear Programs , 1985 .

[16]  R. Fletcher Practical Methods of Optimization , 1988 .

[17]  J. Dennis,et al.  A robust trust region algorithm for nonlinear programming , 1990 .

[18]  Ya-Xiang Yuan,et al.  On a subproblem of trust region algorithms for constrained optimization , 1990, Math. Program..

[19]  M. El-Alem A global convergence theory for the Celis-Dennis-Tapia trust-region algorithm for constrained optimization , 1991 .

[20]  Ya-Xiang Yuan,et al.  A trust region algorithm for equality constrained optimization , 1990, Math. Program..

[21]  Yin Zhang,et al.  Computing a Celis-Dennis-Tapia trust-region step for equality constrained optimization , 1992, Math. Program..

[22]  André L. Tits,et al.  On combining feasibility, descent and superlinear convergence in inequality constrained optimization , 1993, Math. Program..

[23]  J. J. Moré Generalizations of the trust region problem , 1993 .

[24]  John L. Nazareth,et al.  The Newton and Cauchy Perspectives on Computational Nonlinear Optimization , 1994, SIAM Rev..

[25]  David P. Williamson,et al.  .879-approximation algorithms for MAX CUT and MAX 2SAT , 1994, STOC '94.

[26]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[27]  Katta G. Murty,et al.  Mathematical programming: State of the art 1994 , 1994 .

[28]  John L. Nazareth The Newton-Cauchy Framework , 1994, Lecture Notes in Computer Science.

[29]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[30]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[31]  Franz Rendl,et al.  A recipe for semidefinite relaxation for (0,1)-quadratic programming , 1995, J. Glob. Optim..

[32]  Henry Wolkowicz,et al.  Indefinite Trust Region Subproblems and Nonsymmetric Eigenvalue Perturbations , 1995, SIAM J. Optim..

[33]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[34]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[35]  Masakazu Kojima,et al.  Semidefinite Programming Relaxation for Nonconvex Quadratic Programs , 1997, J. Glob. Optim..

[36]  Franz Rendl,et al.  A semidefinite framework for trust region subproblems with applications to large scale minimization , 1997, Math. Program..

[37]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[38]  Franz Rendl,et al.  Semidefinite Programming Relaxations for the Quadratic Assignment Problem , 1998, J. Comb. Optim..

[39]  Xiong Zhang,et al.  Solving Large-Scale Sparse Semidefinite Programs for Combinatorial Optimization , 1999, SIAM J. Optim..