Computational study of basis set and electron correlation effects on anapole magnetizabilities of chiral molecules

In the presence of a static, nonhomogeneous magnetic field, represented by the axial vector B at the origin of the coordinate system and by the polar vector C=∇×B , assumed to be spatially uniform, the chiral molecules investigated in this paper carry an orbital electronic anapole, described by the polar vector A . The electronic interaction energy of these molecules in nonordered media is a cross term, coupling B and C via a¯ , one third of the trace of the anapole magnetizability aαβ tensor, that is, WBC=−a¯B·C . Both A and WBC have opposite sign in the two enantiomeric forms, a fact quite remarkable from the conceptual point of view. The magnitude of a¯ predicted in the present computational investigation for five chiral molecules is very small and significantly biased by electron correlation contributions, estimated at the density functional level via three different functionals. © 2016 Wiley Periodicals, Inc.

[1]  Thomas Bondo Pedersen,et al.  Coupled cluster response functions revisited , 1997 .

[2]  P. Lazzeretti,et al.  Parity violation energies of C4H4X2 molecules for X = O, S, Se, Te and Po † , 2013 .

[3]  M. Malagoli,et al.  Theoretical study of the magnetic properties of water molecules in non-uniform magnetic fields , 1994 .

[4]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[5]  Thomas Bondo Pedersen,et al.  Gauge invariant coupled cluster response theory using optimized nonorthogonal orbitals , 2001 .

[6]  Paul,et al.  SECOND QUANTIZATION- BASED METIJODS IN QUANTUM CHEMISTRY , 2003 .

[7]  P. Lazzeretti,et al.  On the determination of the diagonal components of the optical activity tensor in chiral molecules. , 2014, The Journal of chemical physics.

[8]  J. Gauss,et al.  Coupled-cluster theory for atoms and molecules in strong magnetic fields. , 2015, The Journal of chemical physics.

[9]  M. B. Ferraro,et al.  Nonlinear response of the benzene molecule to strong magnetic fields. , 2005, The Journal of chemical physics.

[10]  P. Lazzeretti,et al.  Chiral discrimination via nuclear magnetic resonance spectroscopy , 2013, Rendiconti Lincei.

[11]  A. Soncini,et al.  Molecular response to a time-independent non-uniform magnetic-field , 2004 .

[12]  T. Helgaker,et al.  Non-perturbative calculation of molecular magnetic properties within current-density functional theory. , 2014, The Journal of chemical physics.

[13]  K. Ruud,et al.  The effect of correlation on molecular magnetizabilities and rotational g tensors , 1997 .

[14]  T. Helgaker,et al.  Nonperturbative ab initio calculations in strong magnetic fields using London orbitals. , 2008, The Journal of chemical physics.

[15]  M. B. Ferraro,et al.  Calculation of the fourth-rank molecular hypermagnetizability of some small molecules. , 2004, The Journal of chemical physics.

[16]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[17]  R. Moccia Upper bounds for the calculation of second order HF energies , 1970 .

[18]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[19]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[20]  T. Helgaker,et al.  Non-perturbative magnetic phenomena in closed-shell paramagnetic molecules. , 2009, Physical chemistry chemical physics : PCCP.

[21]  F. Bloch Zur Wirkung äußerer elektromagnetischer Felder auf kleine Systeme , 1961 .

[22]  M. Caputo,et al.  Fourth-rank hypermagnetizability of medium-size planar conjugated molecules and fullerene , 2005 .

[23]  David J. Tozer,et al.  The exchange-correlation potential in Kohn–Sham nuclear magnetic resonance shielding calculations , 2003 .

[24]  B. Taylor,et al.  CODATA recommended values of the fundamental physical constants: 2006 | NIST , 2007, 0801.0028.

[25]  M. B. Ferraro,et al.  Magnetizabilities of diatomic and linear triatomic molecules in a time-independent nonuniform magnetic field. , 2014, The journal of physical chemistry. A.

[26]  M. Malagoli,et al.  Computational approach to molecular magnetic properties by continuous transformation of the origin of the current density , 1994 .

[27]  Philip J. Stephens,et al.  Coupled-cluster calculations of optical rotation , 2003 .

[28]  L. Adamowicz,et al.  Non-Born–Oppenheimer calculations of the HD molecule in a strong magnetic field , 2015 .

[29]  P. Lazzeretti,et al.  Relative Weights of σ and π Ring Currents in a Few Simple Monocycles. , 2010, Journal of Chemical Theory and Computation.

[30]  Non-perturbative treatment of molecules in linear magnetic fields: calculation of anapole susceptibilities. , 2013, The Journal of chemical physics.

[31]  P. Lazzeretti Magnetic properties of a molecule in non-uniform magnetic field , 1993 .

[32]  Stefano Pelloni,et al.  Chiral discrimination via nuclear magnetic shielding polarisabilities from NMR spectroscopy: Theoretical study of (Ra)‐1,3‐dimethylallene, (2R)‐2‐methyloxirane, and (2R)‐N‐methyloxaziridine , 2007, J. Comput. Chem..

[33]  M. B. Ferraro,et al.  Theoretical estimates of the anapole magnetizabilities of C₄H₄X₂ cyclic molecules for X=O, S, Se, and Te. , 2014, The Journal of chemical physics.

[34]  P. Lazzeretti,et al.  Magnetic-field induced electronic anapoles in small molecules , 2011 .