Boundedness and asymptotic behavior in a fully parabolic chemotaxis-growth system with signal-dependent sensitivity

AbstractThis paper deals with a fully parabolic chemotaxis-growth system with signal-dependent sensitivity $$\left\{\begin{array}{ll}u_t=\Delta u-\nabla\cdot(u\chi(v)\nabla v)+\mu u(1-u), \quad &\quad(x,t)\in\Omega\times (0,\infty),\\ v_{t}=\varepsilon \Delta v+h(u,v), \quad &\quad(x,t)\in \Omega\times (0,\infty),\end{array}\right.$$ut=Δu-∇·(uχ(v)∇v)+μu(1-u),(x,t)∈Ω×(0,∞),vt=εΔv+h(u,v),(x,t)∈Ω×(0,∞),under homogeneous Neumann boundary conditions in a bounded domain $${\Omega\subset {\mathbb{R}}^{n} (n\geq1)}$$Ω⊂Rn(n≥1) with smooth boundary, where $${\varepsilon\in(0,1), \mu>0}$$ε∈(0,1),μ>0 , the function $${\chi(v)}$$χ(v) is the chemotactic sensitivity and h(u,v) denotes the balance between the production and degradation of the chemical signal which depends explicitly on the living organisms. Firstly, by using an iterative method, we derive global existence and uniform boundedness of solutions for this system. Moreover, by relying on an energy approach, the asymptotic stability of constant equilibria is studied. Finally, we shall give an example to illustrate the theoretical results.

[1]  Michael Winkler,et al.  Chemotaxis with logistic source : Very weak global solutions and their boundedness properties , 2008 .

[2]  Youshan Tao,et al.  Boundedness in a chemotaxis model with oxygen consumption by bacteria , 2011 .

[3]  Nicola Bellomo,et al.  Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues , 2015 .

[4]  Michael Winkler,et al.  Large-Data Global Generalized Solutions in a Chemotaxis System with Tensor-Valued Sensitivities , 2015, SIAM J. Math. Anal..

[5]  Kentarou Fujie,et al.  Boundedness in a fully parabolic chemotaxis system with strongly singular sensitivity , 2014, Appl. Math. Lett..

[6]  Pan Zheng,et al.  Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source , 2015 .

[7]  Wei Wang,et al.  Asymptotic behavior of solutions to two-dimensional chemotaxis system with logistic source and singular sensitivity , 2016 .

[8]  Michael Winkler,et al.  A Chemotaxis System with Logistic Source , 2007 .

[9]  Michael Winkler,et al.  Finite-time blow-up in a quasilinear system of chemotaxis , 2008 .

[10]  Qi Wang,et al.  Pattern Formation in Keller-Segel Chemotaxis Models with Logistic Growth , 2014, Int. J. Bifurc. Chaos.

[11]  Quoc Hung Phan,et al.  Global existence of solutions for a chemotaxis-type system arising in crime modeling , 2012, 1206.3724.

[12]  Chuan Xue,et al.  Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms , 2015 .

[13]  Michael Winkler,et al.  How Far Can Chemotactic Cross-diffusion Enforce Exceeding Carrying Capacities? , 2014, J. Nonlinear Sci..

[14]  Michael Winkler,et al.  Large Time Behavior in a Multidimensional Chemotaxis-Haptotaxis Model with Slow Signal Diffusion , 2015, SIAM J. Math. Anal..

[15]  A. Friedman,et al.  Stability of solutions of chemotaxis equations in reinforced random walks , 2002 .

[16]  Michael Winkler,et al.  Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect , 2010 .

[17]  Xinru Cao,et al.  Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with logistic source , 2014 .

[18]  Vincenzo Vespri,et al.  Holder Estimates for Local Solutions of Some Doubly Nonlinear Degenerate Parabolic Equations , 1993 .

[19]  Chunlai Mu,et al.  Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source , 2013 .

[20]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[21]  Michael Winkler,et al.  Boundedness in the Higher-Dimensional Parabolic-Parabolic Chemotaxis System with Logistic Source , 2010 .

[22]  C. Patlak Random walk with persistence and external bias , 1953 .

[23]  Sining Zheng,et al.  Boundedness of solutions to a quasilinear parabolic–elliptic Keller–Segel system with logistic source , 2014 .

[24]  Yung-Sze Choi,et al.  Prevention of blow-up by fast diffusion in chemotaxis , 2010 .

[25]  Dirk Horstmann,et al.  Boundedness vs. blow-up in a chemotaxis system , 2005 .

[26]  Mihaela Negreanu,et al.  On a Two Species Chemotaxis Model with Slow Chemical Diffusion , 2014, SIAM J. Math. Anal..

[27]  Michael Winkler,et al.  Absence of collapse in a parabolic chemotaxis system with signal‐dependent sensitivity , 2010 .

[28]  C. Morales-Rodrigo,et al.  An angiogenesis model with nonlinear chemotactic response and flux at the tumor boundary , 2010 .

[29]  Kentarou Fujie,et al.  Boundedness in a fully parabolic chemotaxis system with singular sensitivity , 2015 .

[30]  Johannes Lankeit,et al.  Chemotaxis can prevent thresholds on population density , 2014, 1403.1837.

[31]  Chunlai Mu,et al.  On a quasilinear parabolic–elliptic chemotaxis system with logistic source , 2014 .

[32]  Herbert Amann,et al.  Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .

[33]  Michael Winkler,et al.  Global weak solutions in a chemotaxis system with large singular sensitivity , 2011 .

[34]  Nicholas D. Alikakos,et al.  LP Bounds of solutions of reaction-diffusion equations , 1979 .

[35]  Chunlai Mu,et al.  Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source , 2014 .

[36]  M. Negreanu,et al.  Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant , 2015 .

[37]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[38]  Michael Winkler,et al.  Global solutions in a fully parabolic chemotaxis system with singular sensitivity , 2011 .

[39]  Qingshan Zhang,et al.  Global boundedness of solutions to a two-species chemotaxis system , 2015 .

[40]  Sining Zheng,et al.  Convergence rate estimates of solutions in a higher dimensional chemotaxis system with logistic source , 2016 .

[41]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[42]  Michael Winkler,et al.  Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening , 2014 .

[43]  Youshan Tao,et al.  Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant , 2012 .