The Art of Scale-Space

Artists pictures rarely have photo-realistic detail. Tools to create pictures from digital photographs might, therefore, include methods for removing detail. These tools such as Gaussian and anisotropic diffusion filters and connected-set morphological filters (sieves) remove detail whilst maintaining scale-space causality, in other words new detail is not created using these operators. Non-photorealistic rendering is, therefore, a potential application of these vision techniques. Sieves, in particular, preserve the appropriate edges of retained segments of interest. The resulting image has fewer extrema and is perceptually simpler than the original and is a step towards an artistic nonphotorealistic rendering of the origina. By increasing the amount of simpli- fication towards the margins of the image, the picture composition can be modulated to direct attention to centre of interest of the image. A second artistic goal. The process also removes that detail that provides perceptual cues about texture. This allows the 'eye' to readily accept alternative, artistic, textures introduced to further create an artistic impression. Moreover, the edges bounding segments accurately represent shapes in the original image and so provide a starting point for sketches.

[1]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[2]  Andrew P. Witkin,et al.  Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  L. Vincent Graphs and mathematical morphology , 1989 .

[4]  Luc Vincent,et al.  Determining watersheds in digital pictures via flooding simulations , 1990, Other Conferences.

[5]  Paul Haeberli,et al.  Paint by numbers: abstract image representations , 1990, SIGGRAPH.

[6]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Tony Lindeberg,et al.  Scale-Space for Discrete Signals , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Philippe Salembier,et al.  Morphological multiscale image segmentation , 1992, Other Conferences.

[9]  Luc Vincent,et al.  Morphological grayscale reconstruction in image analysis: applications and efficient algorithms , 1993, IEEE Trans. Image Process..

[10]  David Salesin,et al.  Interactive pen-and-ink illustration , 1994, SIGGRAPH.

[11]  Arnold W. M. Smeulders,et al.  The Morphological Structure of Images: The Differential Equations of Morphological Scale-Space , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Luc Vincent,et al.  Morphological Area Openings and Closings for Grey-scale Images , 1994 .

[13]  J. Andrew Bangham,et al.  Morphological scale-space preserving transforms in many dimensions , 1996, J. Electronic Imaging.

[14]  Pierre Chardaire,et al.  Multiscale Nonlinear Decomposition: The Sieve Decomposition Theorem , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Mohamed A. Deriche,et al.  Scale-Space Properties of the Multiscale Morphological Dilation-Erosion , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  David Salesin,et al.  Computer-generated watercolor , 1997, SIGGRAPH.

[17]  J. A. Bangham,et al.  Image and signal processing with mathematical morphology , 1998 .

[18]  Aaron Hertzmann,et al.  Painterly rendering with curved brush strokes of multiple sizes , 1998, SIGGRAPH.

[19]  Michael H. F. Wilkinson,et al.  Fast Morphological Attribute Operations Using Tarjan's Union-Find Algorithm , 2000, ISMM.

[20]  Refractor Vision , 2000, The Lancet.

[21]  Douglas DeCarlo,et al.  Stylization and abstraction of photographs , 2002, ACM Trans. Graph..

[22]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[23]  Graham D. Finlayson,et al.  Convex Colour Sieves , 2003, Scale-Space.

[24]  J. Bennett Vision and Art: The Biology of Seeing , 2003 .

[25]  J. Koenderink The structure of images , 2004, Biological Cybernetics.