New Bounds for Spherical Two-Distance Sets

A spherical two-distance set is a finite collection of unit vectors in such that the distance between two distinct vectors assumes one of only two values. We use the semidefinite programming method to compute improved estimates of the maximum size of spherical two-distance sets. Exact answers are found for dimensions n=23 and 40⩽n⩽93 (n≠46, 78), where previous results gave divergent bounds.

[1]  William J. Martin,et al.  Commutative association schemes , 2008, Eur. J. Comb..

[2]  Frank Vallentin,et al.  High-Accuracy Semidefinite Programming Bounds for Kissing Numbers , 2009, Exp. Math..

[3]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[4]  Alexander Schrijver,et al.  New code upper bounds from the Terwilliger algebra and semidefinite programming , 2005, IEEE Transactions on Information Theory.

[5]  Wei-Hsuan Yu,et al.  Spherical two-distance sets and related topics in harmonic analysis , 2014 .

[6]  P. Delsarte AN ALGEBRAIC APPROACH TO THE ASSOCIATION SCHEMES OF CODING THEORY , 2011 .

[7]  Yurii Nesterov,et al.  Squared Functional Systems and Optimization Problems , 2000 .

[8]  R. Rankin The Closest Packing of Spherical Caps in n Dimensions , 1955, Proceedings of the Glasgow Mathematical Association.

[9]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[10]  Gabriele Nebe,et al.  On tight spherical designs , 2012, 1201.1830.

[11]  F. Vallentin Symmetry in semidefinite programs , 2007, 0706.4233.

[12]  Xu Shi On two-distance sets in Euclidean Space , 2002 .

[13]  I. J. Schoenberg Positive definite functions on spheres , 1942 .

[14]  J. Seidel,et al.  Spherical codes and designs , 1977 .

[15]  Akihiro Munemasa,et al.  The nonexistence of certain tight spherical designs , 2005 .

[16]  Christine Bachoc,et al.  Semidefinite programming, harmonic analysis and coding theory , 2009, ArXiv.

[17]  Alexander Schrijver,et al.  Invariant Semidefinite Programs , 2010, 1007.2905.

[18]  J. Lasserre,et al.  Handbook on Semidefinite, Conic and Polynomial Optimization , 2012 .

[19]  C. Bachoc,et al.  New upper bounds for kissing numbers from semidefinite programming , 2006, math/0608426.