New blending algorithm to synergize ocean variables: The case of SMOS sea surface salinity maps

Abstract Using the information of an ocean variable of a given kind to improve another variable of a different kind may be a challenging task, especially when they undergo different physical processes. Statistical methods and assimilation in numerical models had been so far the main ways to perform this type of blending, but these are relatively complicated methods that usually introduce other sources of error and uncertainty. In this paper, the existence of a multifractal hierarchy pervading the structure of all ocean scalars is exploited to introduce a new blending method. This method is not parametric and requires no knowledge about the physics governing the evolution of the scalars, provided that both scalars have the same multifractal structure. We have applied this methodology to SMOS SSS maps, using OI SST maps as template variables, observing not only a qualitative but also a significant quantitative improvement.

[1]  She,et al.  Quantized energy cascade and log-Poisson statistics in fully developed turbulence. , 1995, Physical review letters.

[2]  Antonio Turiel,et al.  Role of multifractal sources in the analysis of stock market time series , 2005 .

[3]  Antonio Turiel,et al.  Microcanonical multifractal formalism: Application to the estimation of ocean surface velocities , 2007 .

[4]  F. Bretherton,et al.  A technique for objective analysis and design of oceanographic experiments applied to MODE-73 , 1976 .

[5]  Antonio Turiel,et al.  Singularity analysis of digital signals through the evaluation of their unpredictable point manifold , 2013, Int. J. Comput. Math..

[6]  Bertrand Chapron,et al.  Earth-Viewing L-Band Radiometer Sensing of Sea Surface Scattered Celestial Sky Radiation—Part I: General Characteristics , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Peter Cornillon,et al.  Evaluation of Front Detection Methods for Satellite-Derived SST Data Using In Situ Observations , 2000 .

[8]  Y. Masumoto A fifty-year eddy-resolving simulation of the world ocean : Preliminary outcomes of OFES (OGCM for the Earth Simulator) , 2004 .

[9]  Yann Kerr,et al.  Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission , 2001, IEEE Trans. Geosci. Remote. Sens..

[10]  William H. Press,et al.  Numerical recipes in C , 2002 .

[11]  Antonio Turiel,et al.  On Optimal Wavelet Bases for the Realization of Microcanonical Cascade Processes , 2008, Int. J. Wavelets Multiresolution Inf. Process..

[12]  Yan Xue,et al.  EVALUATION OF THE GLOBAL OCEAN DATA ASSIMILATION SYSTEM AT NCEP: THE PACIFIC OCEAN , 2003 .

[13]  Joaquim Ballabrera-Poy,et al.  Linear and non-linear T- S models for the eastern North Atlantic from Argo data: Role of surface salinity observations , 2009 .

[14]  Yann Kerr,et al.  SMOS: The Challenging Sea Surface Salinity Measurement From Space , 2010, Proceedings of the IEEE.

[15]  Timothy P. Boyer,et al.  World ocean atlas 2013. Volume 2, Salinity , 2002 .

[16]  Bruno Buongiorno Nardelli,et al.  A Novel Approach for the High-Resolution Interpolation of In Situ Sea Surface Salinity , 2012 .

[17]  Joaquim Ballabrera-Poy,et al.  Tracking oceanic currents by singularity analysis of Microwave Sea Surface Temperature images , 2008 .

[18]  Antonio Turiel,et al.  Numerical methods for the estimation of multifractal singularity spectra on sampled data: A comparative study , 2006, J. Comput. Phys..

[19]  Bertrand Chapron,et al.  Earth-Viewing L-Band Radiometer Sensing of Sea Surface Scattered Celestial Sky Radiation—Part II: Application to SMOS , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[20]  J. Beckers,et al.  Multivariate reconstruction of missing data in sea surface temperature, chlorophyll, and wind satellite fields , 2007 .

[21]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[22]  Hussein M. Yahia,et al.  Motion analysis in oceanographic satellite images using multiscale methods and the energy cascade , 2010, Pattern Recognit..

[23]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[24]  Antonio Turiel,et al.  Empirical evidences of a common multifractal signature in economic, biological and physical systems , 2009 .

[25]  Peter Cornillon,et al.  Multi-Image Edge Detection for SST Images , 1995 .

[26]  Marco Talone,et al.  The SMOS L3 Mapping Algorithm for Sea Surface Salinity , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[27]  S. Mallat A wavelet tour of signal processing , 1998 .

[28]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[29]  Hans J. Liebe,et al.  Propagation Modeling of Moist Air and Suspended Water/Ice Particles at Frequencies Below 1000 GHz , 1993 .

[30]  Antonio Turiel,et al.  The multifractal structure of satellite sea surface temperature maps can be used to obtain global maps of streamlines , 2009 .

[31]  Watson W. Gregg,et al.  Assimilation of SeaWiFS Ocean Chlorophyll Data into a Three-Dimensional Global Ocean Model , 2013 .

[32]  She,et al.  Universal scaling laws in fully developed turbulence. , 1994, Physical review letters.

[33]  Jacqueline Boutin,et al.  First Assessment of SMOS Data Over Open Ocean: Part II—Sea Surface Salinity , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[34]  R. Ferrari,et al.  Compensation and Alignment of Thermohaline Gradients in the Ocean Mixed Layer , 2003 .

[35]  Jacqueline Boutin,et al.  Surface Salinity Retrieved from SMOS Measurements over the Global Ocean: Imprecisions Due to Sea Surface Roughness and Temperature Uncertainties , 2004 .

[36]  A. Kolmogorov Dissipation of energy in the locally isotropic turbulence , 1941, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[37]  William J. Emery,et al.  Computing Coastal Ocean Surface Currents From Infrared and Ocean Color Satellite Imagery , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Y. Masumoto Sharing the results of a high-resolution ocean general circulation model under a multi-discipline framework—a review of OFES activities , 2010 .

[39]  Carolina Gabarró,et al.  SMOS Semi-Empirical Ocean Forward Model Adjustment , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Antonio Turiel,et al.  Multifractal method for the instantaneous evaluation of the stream function in geophysical flows. , 2005, Physical review letters.

[41]  Rita Castro,et al.  Rfianalysis in smos imagery , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[42]  C. Donlon,et al.  The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system , 2012 .

[43]  Antonio Turiel,et al.  Microcanonical multifractal formalism—a geometrical approach to multifractal systems: Part I. Singularity analysis , 2008 .

[44]  Antonio Turiel,et al.  Common turbulent signature in sea surface temperature and chlorophyll maps , 2007 .

[45]  W. Rudin Real and complex analysis , 1968 .