Sparse hidden-dynamics conditional random fields for user intent understanding

Understanding user intent from her sequential search behaviors, i.e. predicting the intent of each user query in a search session, is crucial for modern Web search engines. However, due to the huge number of user behavior variables and coarse level intent labels defined by human editors, it is very difficult to directly model user behavioral dynamics or user intent dynamics in user search sessions. In this paper, we propose a novel Sparse Hidden-Dynamic Conditional Random Fields (SHDCRF) model for user intent learning from their search sessions. Through incorporating the proposed hidden state variables, SHDCRF aims to learn a substructure, i.e. a set of related hidden variables, for each intent label and they are used to model the intermediate dynamics between user intent labels and user behavioral variables. In addition, SHDCRF learns a sparse relation between the hidden variables and intent labels to make the hidden state variables explainable. Extensive experiment results, on real user search sessions from a popular commercial search engine show that the proposed SHDCRF model significantly outperforms in terms of intent prediction results that those classical solutions such as Support Vector Machine (SVM), Conditional Random Field (CRF) and Latnet-Dynamic Conditional Random Field (LDCRF).

[1]  Ahmed Hassan Awadallah,et al.  Beyond DCG: user behavior as a predictor of a successful search , 2010, WSDM '10.

[2]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[3]  In-Ho Kang,et al.  Query type classification for web document retrieval , 2003, SIGIR.

[4]  Enhong Chen,et al.  Context-aware query suggestion by mining click-through and session data , 2008, KDD.

[5]  Daniel E. Rose,et al.  Understanding user goals in web search , 2004, WWW '04.

[6]  Xiao Li,et al.  Precomputing search features for fast and accurate query classification , 2010, WSDM '10.

[7]  Susan T. Dumais,et al.  Improving Web Search Ranking by Incorporating User Behavior Information , 2019, SIGIR Forum.

[8]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[9]  Alex Acero,et al.  Hidden conditional random fields for phone classification , 2005, INTERSPEECH.

[10]  Thierry Artières,et al.  Neural conditional random fields , 2010, AISTATS.

[11]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[12]  Jian Peng,et al.  Conditional Neural Fields , 2009, NIPS.

[13]  Enhong Chen,et al.  Towards context-aware search by learning a very large variable length hidden markov model from search logs , 2009, WWW '09.

[14]  Trevor Darrell,et al.  Latent-Dynamic Discriminative Models for Continuous Gesture Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Qiang Yang,et al.  Context-Aware Online Commercial Intention Detection , 2009, ACML.

[16]  David D. Lewis,et al.  Naive (Bayes) at Forty: The Independence Assumption in Information Retrieval , 1998, ECML.

[17]  Thomas G. Dietterich Machine Learning for Sequential Data: A Review , 2002, SSPR/SPR.

[18]  Qiang Yang,et al.  Query enrichment for web-query classification , 2006, TOIS.

[19]  Ophir Frieder,et al.  Improving automatic query classification via semi-supervised learning , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[20]  William W. Cohen,et al.  Semi-Markov Conditional Random Fields for Information Extraction , 2004, NIPS.

[21]  Li Deng,et al.  Learning in the Deep-Structured Conditional Random Fields , 2009 .

[22]  Ophir Frieder,et al.  Automatic classification of Web queries using very large unlabeled query logs , 2007, TOIS.

[23]  Trevor Darrell,et al.  Hidden Conditional Random Fields for Gesture Recognition , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[24]  Tie-Yan Liu,et al.  Actively predicting diverse search intent from user browsing behaviors , 2010, WWW '10.

[25]  Andrew McCallum,et al.  Collective Segmentation and Labeling of Distant Entities in Information Extraction , 2004 .

[26]  Andrew McCallum,et al.  Dynamic conditional random fields: factorized probabilistic models for labeling and segmenting sequence data , 2004, J. Mach. Learn. Res..

[27]  Thorsten Joachims,et al.  SVM Light: Support Vector Machine , 2002 .

[28]  Ricardo A. Baeza-Yates,et al.  Query Clustering for Boosting Web Page Ranking , 2004, AWIC.

[29]  Hien Nguyen,et al.  Capturing User Intent for Information Retrieval , 2004, AAAI.

[30]  Susan T. Dumais,et al.  Learning user interaction models for predicting web search result preferences , 2006, SIGIR.

[31]  Trevor Darrell,et al.  Conditional Random Fields for Object Recognition , 2004, NIPS.

[32]  Jun Wang,et al.  A User-Item Relevance Model for Log-Based Collaborative Filtering , 2006, ECIR.

[33]  Douglas B. Terry,et al.  Using collaborative filtering to weave an information tapestry , 1992, CACM.

[34]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[35]  Enhong Chen,et al.  Context-aware query classification , 2009, SIGIR.

[36]  Qiang Yang,et al.  Building bridges for web query classification , 2006, SIGIR.

[37]  Zhang Xinhua,et al.  Building Maximum Entropy Text Classifier Using Semi-supervised Learning , 2004 .

[38]  A. Hasman,et al.  Probabilistic reasoning in intelligent systems: Networks of plausible inference , 1991 .

[39]  Sanjay Ghemawat,et al.  MapReduce: simplified data processing on large clusters , 2008, CACM.

[40]  Xiao Li,et al.  Learning query intent from regularized click graphs , 2008, SIGIR '08.

[41]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[42]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[43]  Andrei Z. Broder,et al.  Robust classification of rare queries using web knowledge , 2007, SIGIR.

[44]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[45]  Qi He,et al.  Web Query Recommendation via Sequential Query Prediction , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[46]  Roni Rosenfeld,et al.  Learning Hidden Markov Model Structure for Information Extraction , 1999 .

[47]  Gang Wang,et al.  Understanding user's query intent with wikipedia , 2009, WWW '09.

[48]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.