Detecting phase boundaries of quantum spin-1/2 XXZ ladder via bipartite and multipartite entanglement transitions
暂无分享,去创建一个
Ujjwal Sen | Himadri Shekhar Dhar | Aditi Sen De | U. Sen | A. S. De | S. Roy | D. Rakshit | H. S. Dhar | Sudipto Singha Roy | Debraj Rakshit
[1] M. Lewenstein,et al. Quantum Entanglement , 2020, Quantum Mechanics.
[2] S. Ciuchi,et al. Magnetic phases of spin-1 lattice gases with random interactions , 2017, 1702.01765.
[3] Ujjwal Sen,et al. Quantum discord length is enhanced while entanglement length is not by introducing disorder in a spin chain. , 2016, Physical review. E.
[4] U. Sen,et al. Diverging scaling with converging multisite entanglement in odd and even quantum Heisenberg ladders , 2015, 1505.06083.
[5] U. Sen,et al. Enhancement of Quantum Correlation Length in Quenched Disordered Spin Chains , 2015, 1503.04770.
[6] A. Sanpera,et al. Case study of the uniaxial anisotropic spin-1 bilinear-biquadratic Heisenberg model on a triangular lattice , 2014 .
[7] A. Sanpera,et al. Entanglement properties of spin models in triangular lattices , 2014, 1407.1033.
[8] Yichen Huang,et al. Scaling of quantum discord in spin models , 2013, 1307.6034.
[9] U. Sen,et al. Cumulative quantum work-deficit versus entanglement in the dynamics of an infinite spin chain , 2013, 1307.1419.
[10] U. Sen,et al. Genuine Multipartite Entanglement Trends in Gapless-gapped Transitions of Quantum Spin Systems , 2012, 1211.3241.
[11] Mark M. Wilde,et al. Quantum Information Theory , 2013 .
[12] A. Sanpera,et al. Scaling of the entanglement spectrum near quantum phase transitions , 2013, 1302.5285.
[13] Ujjwal Sen,et al. Characterizing genuine multisite entanglement in isotropic spin lattices. , 2012, Physical review letters.
[14] M. N. Bera,et al. Multisite Entanglement acts as a Better Indicator of Quantum Phase Transitions in Spin Models with Three-spin Interactions , 2012, 1209.1523.
[15] T. Paterek,et al. The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.
[16] U. Sen,et al. Dual quantum-correlation paradigms exhibit opposite statistical-mechanical properties , 2011, 1112.1856.
[17] A Sanpera,et al. Entanglement spectrum, critical exponents, and order parameters in quantum spin chains. , 2011, Physical review letters.
[18] U. Sen,et al. Quantum discord surge heralds entanglement revival in an infinite spin chain , 2010, 1011.5309.
[19] Frank Pollmann,et al. Symmetry protection of topological phases in one-dimensional quantum spin systems , 2009, 0909.4059.
[20] Aditi Sen(De),et al. Entanglement in resonating valence bond states: ladder versus isotropic lattices , 2011 .
[21] P. Giorda,et al. Quantum discord and classical correlations in the bond-charge Hubbard model: Quantum phase transitions, off-diagonal long-range order, and violation of the monogamy property for discord , 2011, 1110.6381.
[22] U. Sen,et al. The density matrix recursion method: genuine multisite entanglement distinguishes odd from even quantum spin ladder states , 2011, 1110.3646.
[23] A. Sanpera,et al. Detection of Entanglement in Ultracold Lattice Gases , 2011, 1105.2446.
[24] M. Lewenstein,et al. Bilinear-biquadratic spin-1 chain undergoing quadratic Zeeman effect , 2011, 1104.5234.
[25] Gustavo Rigolin,et al. Spotlighting quantum critical points via quantum correlations at finite temperatures , 2011 .
[26] A. Pal,et al. Quantum discord in the ground and thermal states of spin clusters , 2010, 1012.0650.
[27] Frank Pollmann,et al. Topological Phases of One-Dimensional Fermions: An Entanglement Point of View , 2010, 1008.4346.
[28] Xiao-Gang Wen,et al. Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order , 2010, 1004.3835.
[29] Sheng-Wen Li,et al. Quantum correlations in topological quantum phase transitions , 2009, 0912.3874.
[30] Marcus Huber,et al. Detection of high-dimensional genuine multipartite entanglement of mixed states. , 2009, Physical review letters.
[31] Roman Orus,et al. Visualizing elusive phase transitions with geometric entanglement , 2009, 0910.2488.
[32] Frank Pollmann,et al. Entanglement spectrum of a topological phase in one dimension , 2009, 0910.1811.
[33] U. Sen,et al. Channel capacities versus entanglement measures in multiparty quantum states , 2009, 0909.0580.
[34] M. S. Sarandy. Classical correlation and quantum discord in critical systems , 2009, 0905.1347.
[35] Raoul Dillenschneider,et al. Quantum discord and quantum phase transition in spin chains , 2008, 0809.1723.
[36] H. Nishimori. Titpack—Numerical diagonalization routines and quantum spin Hamiltonians , 2008 .
[37] R. Orús,et al. Equivalence of critical scaling laws for many-body entanglement in the Lipkin-Meshkov-Glick model. , 2008, Physical review letters.
[38] F. Illuminati,et al. Hierarchies of geometric entanglement , 2007, 0712.4085.
[39] Román Orús,et al. Universal geometric entanglement close to quantum phase transitions. , 2007, Physical review letters.
[40] J. Dalibard,et al. Many-Body Physics with Ultracold Gases , 2007, 0704.3011.
[41] V. Vedral,et al. Entanglement in Many-Body Systems , 2007, quant-ph/0703044.
[42] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[43] A. Sanpera,et al. Quantum state transfer in spin-1 chains , 2006, quant-ph/0610210.
[44] A. Wójcik,et al. Entanglement in the Majumdar-Ghosh model , 2006, cond-mat/0610379.
[45] M. Lewenstein,et al. Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond , 2006, cond-mat/0606771.
[46] G. Rigolin,et al. Multipartite entanglement signature of quantum phase transitions. , 2006, Physical review letters.
[47] P. Zanardi,et al. Sublattice entanglement and quantum phase transitions in antiferromagnetic spin chains , 2006 .
[48] Xiao-Gang Wen,et al. Detecting topological order in a ground state wave function. , 2005, Physical review letters.
[49] John Preskill,et al. Topological entanglement entropy. , 2005, Physical Review Letters.
[50] Phase diagram of S=12 two-leg XXZ spin-ladder systems , 2005, cond-mat/0508620.
[51] E. Popova,et al. Spin gap in low-dimensional magnets (Review) , 2005 .
[52] Min-Fong Yang,et al. Reexamination of entanglement and the quantum phase transition , 2005 .
[53] F. Traversa,et al. Two-point versus multipartite entanglement in quantum phase transitions. , 2005, Physical review letters.
[54] Chang-pu Sun,et al. Characterizing entanglement by momentum jump in the frustrated Heisenberg ring at a quantum phase transition , 2005, quant-ph/0502121.
[55] Spin Gap Antiferromagnets. Materials and Phenomena , 2005, cond-mat/0502019.
[56] A. Osterloh,et al. Constructing N-qubit entanglement monotones from antilinear operators (4 pages) , 2004, quant-ph/0410102.
[57] Tzu-Chieh Wei,et al. Global entanglement and quantum criticality in spin chains , 2005 .
[58] P. Zanardi,et al. Entanglement and Quantum Phase Transition in Low Dimensional Spin Systems , 2004, quant-ph/0407228.
[59] M. Plenio,et al. Three-spin interactions in optical lattices and criticality in cluster Hamiltonians. , 2004, Physical review letters.
[60] F. Verstraete,et al. Diverging entanglement length in gapped quantum spin systems. , 2003, Physical review letters.
[61] P. Goldbart,et al. Geometric measure of entanglement and applications to bipartite and multipartite quantum states , 2003, quant-ph/0307219.
[62] G. Vidal,et al. Entanglement in quantum critical phenomena. , 2002, Physical review letters.
[63] H. Mikeska,et al. Phase diagrams of spin ladders with ferromagnetic legs , 2002, cond-mat/0209677.
[64] Wei Chen,et al. Ground-state phase diagram of S = 1 XXZ chains with uniaxial single-ion-type anisotropy , 2002, cond-mat/0209403.
[65] A. Miyake. Classification of multipartite entangled states by multidimensional determinants , 2002, quant-ph/0206111.
[66] B. Moor,et al. Normal forms and entanglement measures for multipartite quantum states , 2001, quant-ph/0105090.
[67] M. Nielsen,et al. Entanglement in a simple quantum phase transition , 2002, quant-ph/0202162.
[68] P. Zanardi,et al. Quantum entanglement and Bell inequalities in Heisenberg spin chains , 2002, quant-ph/0202108.
[69] A. Osterloh,et al. Scaling of entanglement close to a quantum phase transition , 2002, Nature.
[70] V. Scarani,et al. Bell-type inequalities to detect true n-body nonseparability. , 2002, Physical review letters.
[71] T. Hänsch,et al. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.
[72] D. Meyer,et al. Global entanglement in multiparticle systems , 2001, quant-ph/0108104.
[73] H. Barnum,et al. Monotones and invariants for multi-particle quantum states , 2001, quant-ph/0103155.
[74] M. Lavagna. Quantum Phase Transitions , 2001, cond-mat/0102119.
[75] J. Eisert,et al. Schmidt measure as a tool for quantifying multiparticle entanglement , 2000, quant-ph/0007081.
[76] Quantum phase transitions in antiferromagnets and superfluids , 1999, cond-mat/9908008.
[77] E. Dagotto. Experiments on ladders reveal a complex interplay between a spin-gapped normal state and superconductivity , 1999, cond-mat/9908250.
[78] W. Wootters. Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.
[79] O. Legeza,et al. STABILITY OF THE HALDANE PHASE IN ANISOTROPIC MAGNETIC LADDERS , 1997, cond-mat/9809037.
[80] W. Wootters,et al. Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.
[81] S. M. Girvin,et al. Continuous quantum phase transitions , 1997 .
[82] M. Kaburagi,et al. Ground-State Phase Diagram and Magnetization Curves of the Spin-1 Antiferromagnetic Heisenberg Chain with Bond Alternation and Uniaxial Single-Ion-Type Anisotropy , 1996 .
[83] J. Akimitsu,et al. Superconductivity in the Ladder Material Sr0.4Ca13.6Cu24O41.84 , 1996 .
[84] Charles H. Bennett,et al. Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[85] Mikeska,et al. Phase transitions in the Heisenberg spin ladder with ferromagnetic legs. , 1996, Physical review. B, Condensed matter.
[86] T. M. Rice,et al. Surprises on the Way from One- to Two-Dimensional Quantum Magnets: The Ladder Materials , 1995, Science.
[87] Tota Nakamura,et al. Numerical Study on the Ground-State Phase Diagram of the S=1/2 XXZ Ladder Model. , 1995 .
[88] Correlation functions of the 2D sine-Gordon model , 1995, cond-mat/9504074.
[89] A. Shimony. Degree of Entanglement a , 1995 .
[90] M. Kaburagi,et al. Ground-state phase diagram of the spin-1 antiferromagnetic Heisenberg chain with bond alternation and uniaxial single-ion-type anisotropy , 1995 .
[91] K. Nomura,et al. Critical properties of S= 1/2 antiferromagnetic XXZ chain with next-nearest-neighbour interactions , 1994 .
[92] Gopalan,et al. Spin ladders with spin gaps: A description of a class of cuprates. , 1993, Physical review. B, Condensed matter.
[93] S. Takada,et al. S=1/2 Quantum Heisenberg Ladder and S=1 Haldane Phase , 1993 .
[94] A. Kjekshus,et al. Chemical Phase Diagrams for the YBa2Cu3O7 Family , 1992 .
[95] Strong,et al. Competition between singlet formation and magnetic ordering in one-dimensional spin systems. , 1992, Physical review letters.
[96] Dagotto,et al. Superconductivity in ladders and coupled planes. , 1992, Physical review. B, Condensed matter.
[97] P. Anderson. The Resonating Valence Bond State in La2CuO4 and Superconductivity , 1987, Science.
[98] Schulz Hj. Phase diagrams and correlation exponents for quantum spin chains of arbitrary spin quantum number. , 1986 .
[99] Schulz. Phase diagrams and correlation exponents for quantum spin chains of arbitrary spin quantum number. , 1986, Physical review. B, Condensed matter.
[100] K. Kopinga,et al. Evidence for solitons in a quantum ( S = 1 2 ) XY system , 1984 .
[101] F. Haldane. Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis Néel State , 1983 .
[102] K. Kopinga,et al. Magnetic behavior of the ferromagnetic quantum chain systems (C6H11NH3)CuCl3 (CHAC) and (C6H11NH3)CuBr3 (CHAB) , 1982 .
[103] D. W. Robinson,et al. The finite group velocity of quantum spin systems , 1972 .
[104] N. Goldenfeld. Lectures On Phase Transitions And The Renormalization Group , 1972 .
[105] M. Gaudin,et al. Anisotropic Linear Magnetic Chain , 1966 .
[106] H. Bethe,et al. Zur Theorie der Metalle , 1931 .
[107] H. Bethe. On the theory of metals. 1. Eigenvalues and eigenfunctions for the linear atomic chain , 1931 .