Structure of a model TiO2 photocatalytic interface.

The interaction of water with TiO2 is crucial to many of its practical applications, including photocatalytic water splitting. Following the first demonstration of this phenomenon 40 years ago there have been numerous studies of the rutile single-crystal TiO2(110) interface with water. This has provided an atomic-level understanding of the water-TiO2 interaction. However, nearly all of the previous studies of water/TiO2 interfaces involve water in the vapour phase. Here, we explore the interfacial structure between liquid water and a rutile TiO2(110) surface pre-characterized at the atomic level. Scanning tunnelling microscopy and surface X-ray diffraction are used to determine the structure, which is comprised of an ordered array of hydroxyl molecules with molecular water in the second layer. Static and dynamic density functional theory calculations suggest that a possible mechanism for formation of the hydroxyl overlayer involves the mixed adsorption of O2 and H2O on a partially defected surface. The quantitative structural properties derived here provide a basis with which to explore the atomistic properties and hence mechanisms involved in TiO2 photocatalysis.

[1]  M. A. Henderson A surface science perspective on TiO2 photocatalysis , 2011 .

[2]  M. J. Gillan,et al.  Mixed Dissociative and Molecular Adsorption of Water on the Rutile (110) Surface , 1998 .

[3]  A. Michaelides,et al.  Structure and dynamics of liquid water on rutile TiO2(110) , 2010 .

[4]  B. Hammer,et al.  Role of steps in the dissociative adsorption of water on rutile TiO2(110). , 2013, Physical review letters.

[5]  A. Michaelides,et al.  Solvent-Induced Proton Hopping at a Water–Oxide Interface , 2014, The journal of physical chemistry letters.

[6]  D. F. Ogletree,et al.  The Nature of Water Nucleation Sites on TiO2(110) Surfaces Revealed by Ambient Pressure X-ray Photoelectron Spectroscopy , 2007 .

[7]  G. Thornton,et al.  Oxygen vacancy origin of the surface band-gap state of TiO2(110). , 2010, Physical review letters.

[8]  M. Cima,et al.  Orientation dependence of the isoelectric point of TiO2 (rutile) surfaces. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[9]  P. Cummings,et al.  Ion adsorption at the rutile-water interface: linking molecular and macroscopic properties. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[10]  M. Bedzyk,et al.  Structure of rutile TiO2 (1 1 0) in water and 1 molal Rb+ at pH 12: Inter-relationship among surface charge, interfacial hydration structure, and substrate structural displacements , 2007 .

[11]  N. A. Deskins,et al.  Defining the Role of Excess Electrons in the Surface Chemistry of TiO2 , 2010 .

[12]  A. Stierle,et al.  Initial corrosion observed on the atomic scale , 2006, Nature.

[13]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[14]  A. Fisher,et al.  Electron traps and their effect on the surface chemistry of TiO2(110) , 2010, Proceedings of the National Academy of Sciences.

[15]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[16]  G. Thornton,et al.  Imaging Water Dissociation on TiO(2)(110). , 2001, Physical review letters.

[17]  Joost VandeVondele,et al.  Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. , 2007, The Journal of chemical physics.

[18]  D. P. Woodruff,et al.  Adsorption bond length for H2O on TiO2(110): a key parameter for theoretical understanding. , 2005, Physical review letters.

[19]  O. Dulub,et al.  Local ordering and electronic signatures of submonolayer water on anatase TiO2(101). , 2009, Nature materials.

[20]  Hiroshi Onishi,et al.  Direct visualization of defect-mediated dissociation of water on TiO2(110) , 2006 .

[21]  Jun Cheng,et al.  Aligning electronic energy levels at the TiO2/H2O interface , 2010 .

[22]  K. Fichthorn,et al.  ReaxFF Reactive Force Field Study of the Dissociation of Water on Titania Surfaces , 2013 .

[23]  Robert Lindsay,et al.  Geometric structure of Ti O2 (110) (1×1): Achieving experimental consensus , 2007 .

[24]  James J. Gallagher,et al.  Reply to , 2014 .

[25]  J. Yates,et al.  STM studies of defect production on the -(1×1) and -(1×2) surfaces induced by UV irradiation , 2003 .

[26]  J. Zegenhagen,et al.  Portable chamber for the study of UHV prepared electrochemical interfaces by hard x-ray diffraction. , 2007, The Review of scientific instruments.

[27]  F. Netzer,et al.  Unusual growth phenomena of group III and group V elements on Si(1 1 1) and Ge(1 1 1) surfaces , 2001 .

[28]  J. VandeVondele,et al.  Aligning electronic and protonic energy levels of proton-coupled electron transfer in water oxidation on aqueous TiO₂. , 2014, Angewandte Chemie.

[29]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[30]  B. Hammer,et al.  Formation and splitting of paired hydroxyl groups on reduced TiO2(110). , 2006, Physical review letters.

[31]  Michiel Sprik,et al.  Acidity of the Aqueous Rutile TiO2(110) Surface from Density Functional Theory Based Molecular Dynamics. , 2010, Journal of chemical theory and computation.

[32]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[33]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[34]  D. P. Woodruff,et al.  Water does partially dissociate on the perfect TiO2(110) surface : a quantitative structure determination , 2012 .

[35]  Xue-qing Gong,et al.  Nucleation and Growth of 1D Water Clusters on Rutile TiO2 (011)-2×1 , 2009 .

[36]  K. Maeda Photocatalytic properties of rutile TiO2 powder for overall water splitting , 2014 .

[37]  H. Onishi,et al.  Oxygen-atom vacancies imaged by a noncontact atomic force microscope operated in an atmospheric pressure of N2 gas , 2004 .

[38]  Michael A. Henderson,et al.  An HREELS and TPD study of water on TiO2(110): the extent of molecular versus dissociative adsorption , 1996 .

[39]  A. Michaelides,et al.  Reply to "Comment on 'Structure and dynamics of liquid water on rutile TiO2(110)' " , 2012 .

[40]  Li‐Min Liu,et al.  Band-Gap States of TiO2(110): Major Contribution from Surface Defects , 2013 .

[41]  Timothy C. Berkelbach,et al.  Concerted hydrogen-bond dynamics in the transport mechanism of the hydrated proton: a first-principles molecular dynamics study. , 2009, Physical review letters.

[42]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[43]  B. Hammer,et al.  The Role of Interstitial Sites in the Ti3d Defect State in the Band Gap of Titania , 2008, Science.

[44]  J. Nørskov,et al.  Oxidation and Photo-Oxidation of Water on TiO2 Surface , 2008 .

[45]  Richard L. Kurtz,et al.  Synchrotron radiation studies of H2O adsorption on TiO2(110) , 1989 .

[46]  Z. Dohnálek,et al.  Water as a Catalyst: Imaging Reactions of O2 with Partially and Fully Hydroxylated TiO2(110) Surfaces , 2009 .

[47]  Ramamoorthy,et al.  First-principles calculations of the energetics of stoichiometric TiO2 surfaces. , 1994, Physical review. B, Condensed matter.

[48]  J. VandeVondele,et al.  Molecular Ordering at the Interface Between Liquid Water and Rutile TiO2(110) , 2015 .

[49]  A Molecular Mechanism for the Water–Hydroxyl Balance during Wetting of TiO2 , 2013, 1308.4070.

[50]  A. Selloni,et al.  Hydroxide ions at the water/anatase TiO2(101) interface: structure and electronic states from first principles molecular dynamics. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[51]  H. Onishi,et al.  Topography of the rutile TiO2(110) surface exposed to water and organic solvents. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[52]  G. Thornton,et al.  Structure of clean and adsorbate-covered single-crystal rutile TiO2 surfaces. , 2013, Chemical reviews.

[53]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[54]  Mingwu Shen,et al.  Hyaluronic Acid‐Functionalized Electrospun Polyvinyl Alcohol/Polyethyleneimine Nanofibers for Cancer Cell Capture Applications , 2015 .