Machine learning for precise quantum measurement.

Adaptive feedback schemes are promising for quantum-enhanced measurements yet are complicated to design. Machine learning can autonomously generate algorithms in a classical setting. Here we adapt machine learning for quantum information and use our framework to generate autonomous adaptive feedback schemes for quantum measurement. In particular, our approach replaces guesswork in quantum measurement by a logical, fully automatic, programable routine. We show that our method yields schemes that outperform the best known adaptive scheme for interferometric phase estimation.

[1]  Wineland,et al.  Laser-cooled-atomic frequency standard. , 1985, Physical review letters.

[2]  V. Sandberg,et al.  ON THE MEASUREMENT OF A WEAK CLASSICAL FORCE COUPLED TO A QUANTUM MECHANICAL OSCILLATOR. I. ISSUES OF PRINCIPLE , 1980 .

[3]  Keisuke Goda,et al.  A quantum-enhanced prototype gravitational-wave detector , 2008, 0802.4118.

[4]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[5]  Jean-Marc Lévy-Leblond,et al.  Who is afraid of nonhermitian operators? A quantum description of angle and phase , 1976 .

[6]  J. Kennedy,et al.  Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[7]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[8]  Wiseman,et al.  Optimal states and almost optimal adaptive measurements for quantum interferometry , 2000, Physical review letters.

[9]  Yizhen Zhang,et al.  Particle swarm optimization for unsupervised robotic learning , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[10]  P. Fourie,et al.  The particle swarm optimization algorithm in size and shape optimization , 2002 .

[11]  A Cabello Quantum key distribution in the Holevo limit. , 2000, Physical review letters.

[12]  Howard Mark Wiseman,et al.  Optimal input states and feedback for interferometric phase estimation , 2001 .

[13]  A. S. Holevo,et al.  Covariant measurements and imprimitivity systems , 1984 .

[14]  Kimble,et al.  Precision measurement beyond the shot-noise limit. , 1987, Physical review letters.

[15]  D. Giaouris,et al.  Comparison of particle swarm and simulated annealing algorithms for induction motor fault identification , 2009, 2009 7th IEEE International Conference on Industrial Informatics.

[16]  Barry C. Sanders,et al.  Ordered Measurements of Permutation-Invariant Qubit Strings , 2010 .

[17]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[18]  E. Wigner,et al.  Book Reviews: Group Theory. And Its Application to the Quantum Mechanics of Atomic Spectra , 1959 .

[19]  Howard Mark Wiseman,et al.  Adaptive single-shot phase measurements: A semiclassical approach , 1997 .

[20]  Klauder,et al.  SU(2) and SU(1,1) interferometers. , 1986, Physical review. A, General physics.

[21]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.

[22]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.