A non-overlapping domain decomposition method for continuous-pressure mixed finite element approximations of the Stokes problem

This study is mainly dedicated to the development and analysis of non-overlapping do- main decomposition methods for solving continuous-pressure finite element formulations of the Stokes problem. These methods have the following special features. By keeping the equations and unknowns unchanged at the cross points, that is, points shared by more than two subdomains, one can interpret them as iterative solvers of the actual discrete problem directly issued from the finite element scheme. In this way, the good stability properties of continuous-pressure mixed finite element approximations of the Stokes system are preserved. Estimates ensuring that each iteration can be performed in a stable way as well as a proof of the convergence of the iterative process provide a theoretical background for the application of the related solving procedure. Finally some numerical experiments are given to demonstrate the effectiveness of the approach, and particularly to compare its efficiency with an adaptation to this framework of a standard FETI-DP method.

[1]  M. Bercovier,et al.  A finite element for the numerical solution of viscous incompressible flows , 1979 .

[2]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[3]  Alfio Quarteroni,et al.  A relaxation procedure for domain decomposition methods using finite elements , 1989 .

[4]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[5]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[6]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[7]  Abani K. Patra,et al.  Non-overlapping domain decomposition methods for adaptive hp approximations of the Stokes problem with discontinuous pressure fields , 1997 .

[8]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[9]  Gert Lube,et al.  A nonoverlapping domain decomposition method for the Oseen equations , 1998 .

[10]  L. Pavarino,et al.  Overlapping Schwarz methods for mixed linear elasticity and Stokes problems , 1998 .

[11]  EINAR M. R NQUIST,et al.  Domain Decomposition Methods for the Steady Stokes Equations , 1999 .

[12]  Mark Ainsworth,et al.  Domain decomposition preconditioners for p and hp finite element approximation of Stokes equations , 1999 .

[13]  Jacques Laminie,et al.  On the domain decomposition method for the generalized Stokes problem with continuous pressure , 2000 .

[14]  Patrick Joly,et al.  Domain Decomposition Method for Harmonic Wave Propagation : A General Presentation , 2000 .

[15]  Gert Lube,et al.  An Iterative Substructuring Method for div-stable Finite Element Approximations of the Oseen Problem , 2001, Computing.

[16]  Gert Lube,et al.  A nonoverlapping domain decomposition method for stabilized finite element approximations of the Oseen equations , 2001 .

[17]  D. Rixen,et al.  FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .

[18]  Jan Mandel,et al.  On the convergence of a dual-primal substructuring method , 2000, Numerische Mathematik.

[19]  O. Widlund,et al.  Balancing Neumann‐Neumann methods for incompressible Stokes equations , 2001 .

[20]  Yassine Boubendir,et al.  Techniques de décomposition de domaine et méthodes d'équations intégrales , 2002 .

[22]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[23]  David Dureisseix,et al.  An extension of the FETI domain decomposition method for incompressible and nearly incompressible problems , 2003 .

[24]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[25]  Yassine Boubendir,et al.  Méthode de décomposition de domaine et éléments finis nodaux pour la résolution de l'équation d'Helmholtz , 2004 .

[26]  Eliseo Chacón Vera,et al.  Study of a non-overlapping domain decomposition method: poisson and stokes problems , 2004 .

[27]  Jing Li,et al.  A Dual-Primal FETI method for incompressible Stokes equations , 2005, Numerische Mathematik.

[28]  Mary F. Wheeler,et al.  A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems , 2004, Math. Comput..

[29]  Chang-Ock Lee,et al.  A Neumann-Dirichlet Preconditioner for a FETI-DP Formulation of the Two-Dimensional Stokes Problem with Mortar Methods , 2006, SIAM J. Sci. Comput..

[30]  T. Phillips,et al.  On the enforcement of the zero mean pressure condition in the spectral element approximation of the Stokes problem , 2006 .

[31]  P. Gosselet,et al.  Non-overlapping domain decomposition methods in structural mechanics , 2006, 1208.4209.

[32]  Yassine Boubendir,et al.  Non-overlapping Domain Decomposition Method for a Nodal Finite Element Method , 2006, Numerische Mathematik.

[33]  Yassine Boubendir,et al.  An analysis of the BEM-FEM non-overlapping domain decomposition method for a scattering problem , 2007 .

[34]  Alfio Quarteroni,et al.  Robin-Robin Domain Decomposition Methods for the Stokes-Darcy Coupling , 2007, SIAM J. Numer. Anal..

[35]  Chang-Ock Lee,et al.  A FETI-DP Formulation for the Stokes Problem without Primal Pressure Components , 2010, SIAM J. Numer. Anal..