Temperature dependence for the photovoltaic device parameters of polymer-fullerene solar cells under operating conditions

We report on the temperature dependence of various photovoltaic device parameters of solar cells, fabricated from interpenetrating networks of conjugated polymers with fullerenes, in the wide temperature range of their possible operating conditions ~25‐ 60 °C!. The open-circuit voltage was found to decrease linearly with increasing temperature. For the short-circuit current, we observed a monotonic increase with increasing temperature, followed by a saturation region. The rate of this increase ~coupled to a corresponding increase for the fill factor! was found to overtake the corresponding rate of decrease in voltage, resulting in an overall increase of the energy conversion efficiency. The efficiency was observed to reach a maximum value in the approximate range 47‐ 60 °C. The results are discussed with respect to possible mechanisms for photovoltage generation and charge carrier transport in the conjugated polymer-fullerene composite, and in particular, thermally activated charge carrier mobility. © 2001 American Institute of Physics. @DOI: 10.1063/1.1412270#

[1]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[2]  Wu,et al.  Photoexcitation spectroscopy of conducting-polymer-C60 composites: Photoinduced electron transfer. , 1993, Physical review. B, Condensed matter.

[3]  J. Kroon,et al.  Spectral response and IV-characterization of dye-sensitized nanocrystalline TiO 2 solar cells , 2000 .

[4]  Stephen R. Forrest,et al.  Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes , 2000 .

[5]  Leonard J. Brillson,et al.  The structure and properties of metal-semiconductor interfaces , 1982 .

[6]  B. Batlogg,et al.  Efficient organic photovoltaic diodes based on doped pentacene , 2000, Nature.

[7]  N. Peyghambarian,et al.  Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices , 1998 .

[8]  S. Riad,et al.  Dark and photoelectric conversion properties of p-MgPc/n-Si (Organic/Inorganic) heterojunction cells. , 2000 .

[9]  Jie Yao,et al.  Preparation and Characterization of Fulleroid and Methanofullerene Derivatives , 1995 .

[10]  B. Batlogg,et al.  Ambipolar pentacene field-effect transistors and inverters. , 2000, Science.

[11]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[12]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[13]  Christoph J. Brabec,et al.  Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells , 2000 .

[14]  Dieter Meissner,et al.  Organic Solar Cells , 1991 .

[15]  D. Meissner,et al.  Charge Carrier Photogeneration and Transport in Phthalocyanine/Perylene Thin Film Solar Cells , 1993 .

[16]  Yafit Cohen,et al.  Temperature and irradiance effect on the photovoltaic parameters of a fullerene/conjugated-polymer solar cell , 2001, SPIE Optics + Photonics.

[17]  David Braun,et al.  Semiconducting polymer‐buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells , 1993 .

[18]  William Shockley,et al.  Electrons and Holes in Semiconductors , 1952 .

[19]  D. Berman,et al.  EVA laminate browning after 5 years in a grid-connected, mirror-assisted, photovoltaic system in the Negev desert: effect on module efficiency , 1995 .

[20]  G. Horowitz,et al.  Mobility in Polycrystalline Oligothiophene Field‐Effect Transistors Dependent on Grain Size , 2000 .

[21]  Alan J. Heeger,et al.  Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions , 1995 .

[22]  D. Meissner,et al.  Monochromatic versus solar efficiencies of organic solar cells , 2000 .

[23]  Ian D. Parker,et al.  Carrier tunneling and device characteristics in polymer light‐emitting diodes , 1994 .

[24]  Christoph J. Brabec,et al.  Photovoltaic properties of conjugated polymer/methanofullerene composites embedded in a polystyrene matrix , 1999 .

[25]  Paul W. M. Blom,et al.  Charge transport in poly(p-phenylene vinylene) light-emitting diodes , 2000 .

[26]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[27]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[28]  D. Berman,et al.  EVA browning and the time-dependence of I-V curve parameters on PV modules with and without mirror-enhancement in a desert environment , 1997 .

[29]  H. Nalwa Handbook of organic conductive molecules and polymers , 1997 .

[30]  C. Tang,et al.  Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode , 1997 .

[31]  Mats Andersson,et al.  Laminated fabrication of polymeric photovoltaic diodes , 1998, Nature.

[32]  C. Brabec,et al.  Comparison of photovoltaic devices containing various blends of polymer and fullerene derivatives , 2000 .

[33]  Thomas Fromherz,et al.  The interplay of efficiency and morphology in photovoltaic devices based on interpenetrating networks of conjugated polymers with fullerenes , 2001 .

[34]  D. Faiman,et al.  Photoaction, temperature and O2 depletion effects in fullerene photoelectrochemical solar cells , 1998 .

[35]  Alan J. Heeger,et al.  DUAL-FUNCTION SEMICONDUCTING POLYMER DEVICES : LIGHT-EMITTING AND PHOTODETECTING DIODES , 1994 .

[36]  Gerwin H. Gelinck,et al.  POLARON PAIR FORMATION, MIGRATION, AND DECAY ON PHOTOEXCITED POLY(PHENYLENEVINYLENE) CHAINS , 1996 .