Graded cluster algebras

In the cluster algebra literature, the notion of a graded cluster algebra has been implicit since the origin of the subject. In this work, we wish to bring this aspect of cluster algebra theory to the foreground and promote its study. We transfer a definition of Gekhtman, Shapiro and Vainshtein to the algebraic setting, yielding the notion of a multi-graded cluster algebra. We then study gradings for finite-type cluster algebras without coefficients, giving a full classification. Translating the definition suitably again, we obtain a notion of multi-grading for (generalised) cluster categories. This setting allows us to prove additional properties of graded cluster algebras in a wider range of cases. We also obtain interesting combinatorics—namely tropical frieze patterns—on the Auslander–Reiten quivers of the categories.

[1]  A. B. Buan,et al.  Cluster structures from 2-Calabi–Yau categories with loops , 2008, 0810.3132.

[2]  R. Schiffler,et al.  On a category of cluster algebras , 2012, 1201.5986.

[3]  A. Zelevinsky,et al.  Quantum cluster algebras , 2004, math/0404446.

[4]  Cluster Algebras and Poisson Geometry , 2002, math/0208033.

[5]  Yann Palu Cluster characters for 2-Calabi–Yau triangulated categories , 2008 .

[6]  Mutation in triangulated categories and rigid Cohen–Macaulay modules , 2006, math/0607736.

[7]  S. Fomin,et al.  Cluster algebras II: Finite type classification , 2002, math/0208229.

[8]  Lingyan Guo,et al.  On tropical friezes associated with Dynkin diagrams , 2012, 1201.1805.

[9]  J. Scott Grassmannians and Cluster Algebras , 2003, math/0311148.

[10]  H. S. M. Coxeter,et al.  Triangulated polygons and frieze patterns , 1973, The Mathematical Gazette.

[11]  S. Fomin,et al.  Cluster algebras I: Foundations , 2001, math/0104151.

[12]  B. Keller Triangulated Categories: Cluster algebras, quiver representations and triangulated categories , 2008, 0807.1960.

[13]  Yann Palu Grothendieck Group and Generalized Mutation Rule for 2-Calabi--Yau Triangulated Categories , 2008, 0803.3907.

[14]  Dieter Happel,et al.  On the derived category of a finite-dimensional algebra , 1987 .

[15]  Bernard Leclerc,et al.  Cluster algebras , 2014, Proceedings of the National Academy of Sciences.

[16]  Cluster ensembles, quantization and the dilogarithm , 2003, math/0311245.

[17]  D. Simson,et al.  Elements of the Representation Theory of Associative Algebras , 2007 .

[18]  Cluster algebras as Hall algebras of quiver representations , 2004, math/0410187.

[19]  Tilting theory and cluster combinatorics , 2004, math/0402054.

[20]  J. Grabowski,et al.  Graded quantum cluster algebras and an application to quantum Grassmannians , 2013, 1301.2133.

[21]  Sergey Fomin,et al.  Cluster algebras III: Upper bounds and double Bruhat cells , 2003 .

[22]  C. Geiss,et al.  A Caldero–Chapoton formula for generalized cluster categories , 2012, 1209.2081.