Correlation Bounds and #SAT Algorithms for Small Linear-Size Circuits

We revisit the gate elimination method, generalize it to prove correlation bounds of boolean circuits with Parity, and also derive deterministic #SAT algorithms for small linear-size circuits. In particular, we prove that, for boolean circuits of size \(3n - n^{0.51}\), the correlation with Parity is at most \(2^{-n^{\varOmega (1)}}\), and there is a #SAT algorithm running in time \(2^{n-n^{\varOmega (1)}}\); for circuit size 2.99n, the correlation with Parity is at most \(2^{-{\varOmega (n)}}\), and there is a #SAT algorithm running in time \(2^{n-{\varOmega (n)}}\). Similar correlation bounds and algorithms are also proved for circuits of size almost 2.5n over the full binary basis \(B_2\).

[1]  Norbert Blum A Boolean Function Requiring 3n Network Size , 1984, Theor. Comput. Sci..

[2]  A. Yao Separating the polynomial-time hierarchy by oracles , 1985 .

[3]  Johan Håstad,et al.  Almost optimal lower bounds for small depth circuits , 1986, STOC '86.

[4]  Uri Zwick A 4n Lower Bound on the Combinational Complexity of Certain Symmetric Boolean Functions over the Basis of Unate Dyadic Boolean Functions , 1991, SIAM J. Comput..

[5]  Johan Hå stad The Shrinkage Exponent of de Morgan Formulas is 2 , 1998 .

[6]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[7]  J. Håstad The Shrinkage Exponent of de Morgan Formulas is 2 , 1998, SIAM J. Comput..

[8]  Ran Raz,et al.  Explicit lower bound of 4.5n - o(n) for boolena circuits , 2001, STOC '01.

[9]  Kazuo Iwama,et al.  An Explicit Lower Bound of 5n - o(n) for Boolean Circuits , 2002, MFCS.

[10]  Claus-Peter Schnorr Zwei lineare untere Schranken für die Komplexität Boolescher Funktionen , 2005, Computing.

[11]  Jean Bourgain,et al.  On the Construction of Affine Extractors , 2007 .

[12]  Rahul Santhanam,et al.  Fighting Perebor: New and Improved Algorithms for Formula and QBF Satisfiability , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[13]  Alexander S. Kulikov,et al.  An Elementary Proof of a 3n - o(n) Lower Bound on the Circuit Complexity of Affine Dispersers , 2011, MFCS.

[14]  Ben Reichardt,et al.  Reflections for quantum query algorithms , 2010, SODA '11.

[15]  Xin Li,et al.  A New Approach to Affine Extractors and Dispersers , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.

[16]  Amir Yehudayoff,et al.  Affine extractors over prime fields , 2011, Comb..

[17]  Russell Impagliazzo,et al.  Approximating AC^0 by Small Height Decision Trees and a Deterministic Algorithm for #AC^0SAT , 2012, 2012 IEEE 27th Conference on Computational Complexity.

[18]  Johan Håstad,et al.  On the Correlation of Parity and Small-Depth Circuits , 2014, SIAM J. Comput..

[19]  Russell Impagliazzo,et al.  A satisfiability algorithm for AC0 , 2012, ACM-SIAM Symposium on Discrete Algorithms.

[20]  Kazuhisa Seto,et al.  A Satisfiability Algorithm and Average-Case Hardness for Formulas over the Full Binary Basis , 2012, Computational Complexity Conference.

[21]  Russell Impagliazzo,et al.  Pseudorandomness from Shrinkage , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[22]  T. Sanders,et al.  Analysis of Boolean Functions , 2012, ArXiv.

[23]  Ran Raz,et al.  Improved Average-Case Lower Bounds for DeMorgan Formula Size , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[24]  Ran Raz,et al.  Average-case lower bounds for formula size , 2013, STOC '13.

[25]  Gil Cohen,et al.  The Complexity of DNF of Parities , 2016, Electron. Colloquium Comput. Complex..

[26]  Russell Impagliazzo,et al.  Fourier Concentration from Shrinkage , 2014, computational complexity.

[27]  David Zuckerman,et al.  Mining Circuit Lower Bound Proofs for Meta-algorithms , 2014, Computational Complexity Conference.

[28]  Valentine Kabanets,et al.  An Improved Deterministic #SAT Algorithm for Small de Morgan Formulas , 2014, Algorithmica.

[29]  Correlation bounds and #SAT algorithms for small linear-size circuits , 2016, Theor. Comput. Sci..