Conceptual and Technical Design Aspects of Accelerators for External Injection in LWFA

Laser driven Wake-Field Acceleration (LWFA) has proven its capability of accelerating electron bunches (e-bunches) to up to 4 GeV energy in a single stage while reaching gradients up to hundreds of GV/m. Because of the short period of the accelerating field (typically ranging from 100 fs to 1 ps duration) and the requirement of extremely small beam size (typically smaller than 1 μm) to match the channel, e-bunches can reach extremely high densities. They can be either extracted directly from the plasma or externally injected. The study of the external injection is interesting for two main reasons. On the one hand this method allows better control of the quality of the input beam and on the other hand it is in general necessary when a staged approach of the accelerator is considered. The interest in producing, characterizing and transporting high brightness ultra-short e-bunches has grown together with the interest in LWFA and other novel high-gradient acceleration techniques. In this paper we will review the principal techniques for producing and shaping ultra-short electron bunches with the example of the SINBAD-ARES (Accelerator Research Experiment at SINBAD) linac at the Deutsches Elektronen-Synchrotron (DESY). Our goal is to show how the design of the SINBAD-ARES linac satisfies the requirements for generating high brightness LWFA probes. In the last part of the paper we shall also comment on the technical challenges for electron control and characterization.

[1]  Gil Travish,et al.  Velocity bunching of high-brightness electron beams , 2005 .

[2]  Kwang-Je Kim,et al.  Formulas for coherent synchrotron radiation microbunching in a bunch compressor chicane , 2002 .

[3]  Igor Isaev Stability and performance studies of the PITZ photoelectron gun , 2018 .

[4]  O. J. Luiten,et al.  How to realize uniform three-dimensional ellipsoidal electron bunches. , 2004, Physical review letters.

[5]  P. R. Bolton,et al.  Longitudinal emittance measurements at the SLAC gun test facility , 2003 .

[6]  D. Lipka,et al.  A Beam Arrival Time Cavity for REGAE at DESY , 2014 .

[7]  Ji Qiang,et al.  Longitudinal pulse shaping for the suppression of coherent synchrotron radiation-induced emittance growth , 2013 .

[8]  K. Floettmann,et al.  Generation of sub-fs electron beams at few-MeV energies , 2014 .

[9]  I. Cudin,et al.  Electron slicing for the generation of tunable femtosecond soft x-ray pulses from a free electron laser and slice diagnostics , 2013 .

[10]  Kaoru Yokoya,et al.  Transverse beam dynamics in plasma-based linacs , 1998 .

[11]  Barbara Marchetti,et al.  Simulations and Plans for a Dielectric Laser Acceleration Experiment at SINBAD , 2017 .

[12]  Massimo Ferrario,et al.  Velocity Bunching in Photo-Injectors , 2001 .

[13]  Holger Schlarb,et al.  Present and Future Optical-to-Microwave Synchronization Systems at REGAE Facility for Electron Diffraction and Plasma Acceleration Experiments , 2015 .

[14]  A. Ferran Pousa,et al.  BEAM QUALITY LIMITATIONS OF PLASMA-BASED ACCELERATORS ∗ , 2018 .

[15]  A Mostacci,et al.  Experimental demonstration of emittance compensation with velocity bunching. , 2010, Physical review letters.

[16]  K. Nakamura,et al.  Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. , 2014, Physical review letters.

[17]  P. Krejcik,et al.  Few-femtosecond time-resolved measurements of X-ray free-electron lasers , 2014, Nature Communications.

[18]  David Alesini,et al.  Direct Measurement of Sub-10 fs Relativistic Electron Beams with Ultralow Emittance. , 2016, Physical review letters.

[19]  A. Loulergue,et al.  The dependence of longitudinal emittance upon surface charge density in a RF photoinjector , 1997, Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167).

[20]  Sergey D. Chemerisov,et al.  Laser pulse shaping for generating uniform three-dimensional ellipsoidal electron beams. , 2009 .

[21]  Mikhail Krasilnikov,et al.  Production of quasi ellipsoidal laser pulses for next generation high brightness photoinjectors , 2016 .

[22]  Hossein Delsim-Hashemi Single Shot Transversal Profile Monitoring of Ultra Low Charge Relativistic Electron Bunches at REGAE , 2017 .

[23]  C. B. Schroeder,et al.  Plasma-driven ultrashort bunch diagnostics , 2016, 1603.02511.

[24]  Germany,et al.  Simulations on a potential hybrid and compact attosecond X-ray source based on RF and THz technologies , 2018, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[25]  T. Antonsen,et al.  Direct acceleration of electrons in a corrugated plasma waveguide. , 2007, Physical review letters.

[26]  M. Tzoufras,et al.  Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime , 2007 .

[27]  K. Flöttmann,et al.  Measurement of ultra low transverse emittance at REGAE , 2016 .

[28]  M. Borland Potential production of ultrashort electron bunches with the Advanced Photon Source linac , 2001, PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No.01CH37268).

[29]  Waldemar Koprek,et al.  Status of The SwissFEL BPM System , 2016 .

[30]  M. Borland,et al.  Elegant : a flexible SDDS-compliant code for accelerator simulation. , 2000 .

[31]  Eric Esarey,et al.  Physics of laser-driven plasma-based electron accelerators , 2009 .

[32]  I. Zagorodnov,et al.  Semianalytical modeling of multistage bunch compression with collective effects , 2010, 1007.0872.

[33]  Alessandro Cianchi,et al.  Femtosecond timing-jitter between photo-cathode laser and ultra-short electron bunches by means of hybrid compression , 2016 .

[34]  Frank Tsung,et al.  Transverse emittance growth in staged laser-wakefield acceleration , 2012 .

[35]  A. P. Potylitsyn,et al.  Transverse Beam Profile Imaging of Few-Micrometer Beam Sizes Based on a Scintillator Screen , 2016 .

[36]  T. Limberg,et al.  Generation of ultrashort bunches by cancellation of nonlinear distortions in the longitudinal phase space , 2001 .

[37]  Ralph Aßmann,et al.  Accelerator Physics Challenges towards a Plasma Accelerator with Usable Beam Quality , 2014 .

[38]  S. Bayesteh,et al.  Transverse electron beam diagnostics at REGAE , 2014 .

[39]  Ilan Ben-Zvi,et al.  Laser Wakefield Acceleration Driven by ATF CO2 Laser (STELLA‐LW) , 2004 .

[40]  K. P. Wootton,et al.  Nonlinear response in high-field dielectric laser accelerators , 2017 .

[41]  Pietro Musumeci,et al.  Nanometer emittance ultralow charge beams from rf photoinjectors , 2012 .

[42]  M. Ferrario,et al.  External-injection Experiment at SPARC_LAB☆ , 2014 .

[43]  Henrik Loos Longitudinal phase space tomography at the SLAC gun test facility and the BNL DUV-FEL , 2004 .

[44]  P Emma,et al.  Femtosecond and subfemtosecond x-ray pulses from a self-amplified spontaneous-emission-based free-electron laser. , 2004, Physical review letters.

[45]  Christophe Szwaj,et al.  Horizon 2020 EuPRAXIA design study , 2017 .

[46]  Barbara Marchetti,et al.  Reconstruction of the 3D charge distribution of an electron bunch using a novel variable-polarization transverse deflecting structure (TDS) , 2017 .

[47]  M. Dohlus,et al.  Impact of Optics on CSR-Related Emittance Growth in Bunch Compressor Chicanes , 2005, Proceedings of the 2005 Particle Accelerator Conference.

[48]  Rasmus Ischebeck,et al.  Design of a Time-resolved Electron Diagnostics Using THz Fields Excited in a Split Ring Resonator at FLUTE , 2017 .

[49]  Walter Wuensch CERN – EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH ADVANCES IN HIGH-GRADIENT ACCELERATING STRUCTURES AND IN THE UNDERSTANDING GRADIENT LIMITS , 2018 .

[50]  Barbara Marchetti,et al.  Matching Space-charge Dominated Electron Bunches into the Plasma Accelerator at SINBAD , 2017 .

[51]  D. Edwards,et al.  An Introduction to the Physics of High Energy Accelerators , 1992 .

[52]  R. Gluckstern,et al.  SPACE CHARGE EFFECTS. , 1970 .

[53]  Shanhui Fan,et al.  Towards a Fully Integrated Accelerator on a Chip: Dielectric Laser Acceleration (DLA) From the Source to Relativistic Electrons , 2017 .

[54]  Holger Schlarb,et al.  Technical Design Considerations About the SINBAD-ARES Linac , 2016 .

[55]  Irene Dornmair,et al.  Emittance conservation by tailored focusing profiles in a plasma accelerator , 2015 .

[56]  Barbara Marchetti,et al.  X-Band TDS Project , 2017 .

[57]  P Craievich,et al.  Passive Linearization of the Magnetic Bunch Compression Using Self-Induced Fields. , 2017, Physical review letters.

[58]  Barbara Marchetti,et al.  Electron-beam manipulation techniques in the SINBAD Linac for external injection in plasma wake-field acceleration , 2016 .

[59]  Scott C. Wilks,et al.  Beam Loading in Plasma Accelerators , 1987 .

[60]  Alexander Pukhov,et al.  Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons , 2004 .

[61]  Barbara Marchetti,et al.  Sub-fs electron bunch generation with sub-10-fs bunch arrival-time jitter via bunch slicing in a magnetic chicane , 2016 .

[62]  Barbara Marchetti,et al.  Laser-driven Acceleration with External Injection at SINBAD , 2014 .

[63]  J. B. Rosenzweig,et al.  Longitudinal phase space characterization of the blow-out regime of rf photoinjector operation , 2009 .

[64]  John Schmerge LCLS Gun Solenoid Design Considerations , 2010 .

[65]  Warren B. Mori,et al.  Beam loading by electrons in nonlinear plasma wakesa) , 2009 .

[66]  Barbara Marchetti,et al.  Longitudinal phase space reconstruction simulation studies using a novel X-band transverse deflecting structure at the SINBAD facility at DESY , 2018, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[67]  K. Czuba,et al.  The concept of the RF phase reference distribution system for SINBAD accelerator research facility , 2018, 2018 22nd International Microwave and Radar Conference (MIKON).

[68]  Steven H. Gold Overview of Advanced , Non-Klystron rf Sources , 2002 .

[69]  G. Travish,et al.  Demonstration of electron acceleration in a laser-driven dielectric microstructure , 2013, Nature.

[70]  A. Bacci,et al.  Ultra-short electron bunches by Velocity Bunching as required for plasma wave accelerations , 2014 .

[71]  H. Schlarb,et al.  Measurement of the beam energy spread in the TTF photo-injector , 2003, Proceedings of the 2003 Particle Accelerator Conference.

[72]  Robert Rossmanith,et al.  Dogleg Design for the SINBAD Linac , 2016 .

[73]  D. Stratakis,et al.  A hybrid approach for generating ultra-short bunches for advanced accelerator applications , 2016 .

[74]  J. Rosenzweig,et al.  Experimental generation and characterization of uniformly filled ellipsoidal electron-beam distributions. , 2008, Physical review letters.

[75]  Barbara Marchetti,et al.  Compression of a 20 pC e-bunch at the European XFEL for Single Spike Operation☆ , 2014 .

[76]  G. D'Auria,et al.  X-band technology applications at FERMI@Elettra FEL project , 2011 .

[77]  Benno Zeitler,et al.  Linearization of the longitudinal phase space without higher harmonic field , 2015 .

[78]  Mikhail Yurkov,et al.  Longitudinal space charge-driven microbunching instability in the TESLA Test Facility linac , 2004 .

[79]  S. Di Mitri,et al.  Electron beam brightness in linac drivers for free-electron-lasers , 2014 .

[80]  Emilio A. Nanni,et al.  Terahertz-driven linear electron acceleration , 2014, Nature Communications.

[81]  Germán Sciaini,et al.  REGAE: New Source for Atomically Resolved Dynamics , 2012 .

[82]  Minghao Qi,et al.  Dielectric laser accelerators , 2013, 1309.7637.

[83]  Benno Zeitler,et al.  Phase Space Linearization and External Injection of Electron Bunches into Laser-Driven Plasma Wakefields at REGAE , 2017 .

[84]  C. Limborg-Deprey,et al.  Uncorrelated Energy Spread and Longitudinal Emittance of A Photoinjector Beam , 2005, Proceedings of the 2005 Particle Accelerator Conference.

[85]  Y. Glinec,et al.  Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses , 2006, Nature.

[86]  Jacek Krzywinski,et al.  Beam shaping to improve the free-electron laser performance at the Linac Coherent Light Source , 2016, Nonlinear Dynamics and Collective Effects in Particle Beam Physics.

[87]  Henrik Loos,et al.  Measurements and Analysis of a High-Brightness Electron Beam Collimated in a Magnetic Bunch Compressor , 2015 .

[88]  A. J. Gonsalves,et al.  Multistage coupling of independent laser-plasma accelerators , 2016, Nature.

[89]  France,et al.  Longitudinal compression and transverse matching of electron bunch for external injection LPWA at ESCULAP , 2017 .

[90]  Simona Bettoni,et al.  Emittance measurements and minimization at the SwissFEL Injector Test Facility , 2014 .

[91]  John M. Dawson,et al.  Beam Loading Efficiency in Plasma Accelerators , 1987 .

[92]  M. Dohlus,et al.  CSRtrack : Faster Calculation of 3-D CSR Effects , 2004 .

[93]  Barbara Marchetti,et al.  Design Study for Generating Sub-femtosecond to Femtosecond Electron Bunches for Advanced Accelerator Development at SINBAD , 2017 .

[94]  Barbara Marchetti,et al.  Improved Electron Beam Quality from External Injection in Laser-Driven Plasma Acceleration at SINBAD , 2017 .

[95]  S. Lidia,et al.  A Three-Dimensional Quasi-Static Model for High Brightness Beam Dynamics Simulation , 2005 .

[96]  Barbara Marchetti,et al.  Status Update of the SINBAD-ARES Linac Under Construction at DESY , 2017 .

[97]  Paul Emma,et al.  X-Band RF harmonic compensation for linear bunch compression in the LCLS , 2001 .