Selected physical properties of aqueous potassium salt of l-phenylalanine as a solvent for CO2 capture

[1]  John McMurry,et al.  Fundamentals of Organic Chemistry , 2019, Engineering Chemistry.

[2]  K. Muthukumar,et al.  Effect of l-arginine on the physical properties of choline chloride and glycerol based deep eutectic solvents , 2015 .

[3]  M. S. Shaikh,et al.  Measurement and prediction of physical properties of aqueous sodium l-prolinate and piperazine as a solvent blend for CO2 removal , 2015 .

[4]  B. Bruggen,et al.  Equilibrium solubility, density, viscosity and corrosion rate of carbon dioxide in potassium lysinate solution , 2015 .

[5]  M. S. Shaikh,et al.  Physicochemical properties of aqueous solutions of sodium glycinate in the non-precipitation regime from 298.15 to 343.15 K , 2015 .

[6]  I. M. Atadashi,et al.  Selected physical properties of binary mixtures of crude glycerol and methanol at various temperatures , 2015 .

[7]  Meng-Hui Li,et al.  Thermophysical property characterization of aqueous amino acid salt solution containing serine , 2014 .

[8]  Meng-Hui Li,et al.  Densities, viscosities, refractive indices, and electrical conductivities of aqueous alkali salts of α-alanine , 2014 .

[9]  H. Modarress,et al.  Prediction of Thermophysical Properties for Binary Mixtures of Common Ionic Liquids with Water or Alcohol at Several Temperatures and Atmospheric Pressure by Means of Artificial Neural Network , 2014 .

[10]  M. S. Shaikh,et al.  Physicochemical Properties of Aqueous Solutions of Sodium l-Prolinate as an Absorbent for CO2 Removal , 2014 .

[11]  Hisham N.H. Saadawi,et al.  Thermodynamic and transport property models for carbon capture and sequestration (CCS) processes with emphasis on CO2 transport , 2013 .

[12]  Laura A. Pellegrini,et al.  Regeneration Section of CO2 Capture Plant by Mea Scrubbing with a Rate-based Model , 2013 .

[13]  Markus Haider,et al.  Dynamic modeling of CO2 absorption from coal-fired power plants into an aqueous monoethanolamine solution , 2013 .

[14]  Jinwon Park,et al.  Solubility of CO2 in Amino-Acid-Based Solutions of (Potassium Sarcosinate), (Potassium Alaninate + Piperazine), and (Potassium Serinate + Piperazine) , 2013 .

[15]  M. Akbar,et al.  Densities, refractive index and excess properties of bis(2-hydroxyethyl)ammonium acetate ([bheaa]) + monoethanolamine + water system at temperatures from 303.15 to 353.15 K , 2013 .

[16]  M. S. Shaikh,et al.  Physical Properties of Aqueous Blends of Sodium Glycinate (SG) and Piperazine (PZ) as a Solvent for CO2 Capture , 2013 .

[17]  Meng-Hui Li,et al.  Diffusivity, Density and Viscosity of Aqueous Solutions of Choline Chloride/Ethylene Glycol and Choline Chloride/Malonic Acid , 2012 .

[18]  Bor-Kuan Chen,et al.  Standard entropy, surface excess entropy, surface enthalpy, molar enthalpy of vaporization, and critical temperature of bis(trifluoromethanesulfonyl)imide-based ionic liquids , 2012 .

[19]  M. Akbar,et al.  Thermophysical properties for the binary mixtures of 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [hmim][Tf2N] + N-methyldiethanolamine (MDEA) at temperatures (303.15 to 323.15) K , 2012 .

[20]  D. Brilman,et al.  Solubility of CO2 in aqueous potassium l-prolinate solutions—absorber conditions , 2012 .

[21]  Bor-Kuan Chen,et al.  Thermophysical properties of binary mixtures {1-methyl-3-pentylimidazolium tetrafluoroborate + polyethylene glycol methyl ether} , 2012 .

[22]  A. Hartono,et al.  Density, viscosity, and N2O solubility of aqueous amino acid salt and amine amino acid salt solutions , 2012 .

[23]  M. Fakhree,et al.  Density, viscosity, and surface tension of water+ethanol mixtures from 293 to 323K , 2012, Korean Journal of Chemical Engineering.

[24]  T. Murugesan,et al.  Density, Refractive Index, and Excess Properties of 1-Butyl-3-methylimidazolium Tetrafluoroborate with Water and Monoethanolamine , 2012 .

[25]  K. K. Lau,et al.  Physical Properties of Piperazine (PZ) Activated Aqueous Solutions of 2-Amino-2-hydroxymethyl-1,3-propanediol (AHPD + PZ) , 2012 .

[26]  Payam Shafigh,et al.  Using waste plastic bottles as additive for stone mastic asphalt , 2011 .

[27]  Meihong Wang,et al.  Post-combustion CO2 capture with chemical absorption: A state-of-the-art review , 2011 .

[28]  Jon Gibbins,et al.  On the integration of CO2 capture with coal-fired power plants: A methodology to assess and optimise solvent-based post-combustion capture systems , 2011 .

[29]  Sergio Mussati,et al.  Post-combustion CO2 capture process: Equilibrium stage mathematical model of the chemical absorption of CO2 into monoethanolamine (MEA) aqueous solution , 2011 .

[30]  K. K. Lau,et al.  Physical Properties and Thermal Decomposition of Aqueous Solutions of 2-Amino-2-hydroxymethyl-1, 3-propanediol (AHPD) , 2011 .

[31]  L. K. Keong,et al.  Physical Properties of Aqueous Solutions of Piperazine and (2-Amino-2-methyl-1-propanol + Piperazine) from (298.15 to 333.15) K , 2011 .

[32]  K. A. Hoff,et al.  Investigation of amine amino acid salts for carbon dioxide absorption , 2010 .

[33]  Meng-Hui Li,et al.  Electrolytic conductivity and molar heat capacity of two aqueous solutions of ionic liquids at room-temperature: measurements and correlations , 2010 .

[34]  M. I. Mutalib,et al.  Thermophysical Properties of Aqueous Piperazine and Aqueous (N-Methyldiethanolamine + Piperazine) Solutions at Temperatures (298.15 to 338.15) K , 2009 .

[35]  M. J. Groeneveld,et al.  Precipitation regime for selected amino acid salts for CO2 capture from flue gases , 2009 .

[36]  Helmut Rode,et al.  Development of an Economic Post-Combustion Carbon Capture Process , 2009 .

[37]  Honglai Liu,et al.  Density, viscosity and electrical conductivity of 1-butyl-3-methylimidazolium hexafluorophosphate + monoethanolamine and + N, N-dimethylethanolamine , 2008 .

[38]  S. Kersten,et al.  Physiochemical Properties of Several Aqueous Potassium Amino Acid Salts , 2008 .

[39]  G. Versteeg,et al.  Characterization of potassium glycinate for carbon dioxide absorption purposes , 2007 .

[40]  E. S. Hamborg,et al.  Dissociation constants and thermodynamic properties of amino acids used in CO2 absorption from (293 to 353) K , 2007 .

[41]  Amornvadee Veawab,et al.  Environmental impacts of absorption-based CO2 capture unit for post-combustion treatment of flue gas from coal-fired power plant , 2007 .

[42]  Erling Halfdan Stenby,et al.  CO2 Capture from Coal Fired Power Plants , 2007 .

[43]  Erling Halfdan Stenby,et al.  Modeling of CO2 absorber using an AMP solution , 2006 .

[44]  H. Galleguillos,et al.  Density, Refractive Index, Viscosity, and Electrical Conductivity in the Na2CO3 + Poly(ethylene glycol) + H2O System from (293.15 to 308.15) K , 2004 .

[45]  G. Versteeg,et al.  Equilibrium solubility of CO2 in aqueous potassium taurate solutions: part 2: Experimental VLE data and model , 2003 .

[46]  G. Versteeg,et al.  Equilibrium Solubility of CO2 in Aqueous Potassium Taurate Solutions: Part 1. Crystallization in Carbon Dioxide Loaded Aqueous Salt Solutions of Amino Acids , 2003 .

[47]  Edward S Rubin,et al.  A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. , 2002, Environmental science & technology.

[48]  Atul K. Jain,et al.  Concerns about climate change and the role of fossil fuel use , 2001 .

[49]  H Herzog,et al.  Capturing greenhouse gases. , 2000, Scientific American.

[50]  R. Hook,et al.  An Investigation of Some Sterically Hindered Amines as Potential Carbon Dioxide Scrubbing Compounds , 1997 .

[51]  J. Navaza,et al.  Surface Tension of Binary Mixtures of Water + Monoethanolamine and Water + 2-Amino-2-methyl-1-propanol and Tertiary Mixtures of These Amines with Water from 25 °C to 50 °C , 1997 .

[52]  T. Lin,et al.  Contribution of the surface free energy perturbation to protein-solvent interactions. , 1994, Biochemistry.

[53]  H. Bull,et al.  Surface tension of amino acid solutions: a hydrophobicity scale of the amino acid residues. , 1974, Archives of biochemistry and biophysics.

[54]  A. R. Thompson,et al.  Densities and Refractive Indices of Aqueous Monoethanolamine, Diethanolamine, Triethanolamine. , 1964 .

[55]  G. Fulcher,et al.  ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES , 1925 .

[56]  Dag A. Eimer,et al.  Viscosities of Pure and Aqueous Solutions of Monoethanolamine (MEA), Diethanolamine (DEA) and N-Methyldiethanolamine (MDEA) , 2013 .

[57]  A. Hartono,et al.  Liquid speciation study in amine amino acid salts for CO2 absorbent with 13C-NMR , 2011 .

[58]  K. A. Hoff,et al.  Equilibrium absorption of carbon dioxide by amino acid salt and amine amino acid salt solutions , 2011 .

[59]  Kaj Thomsen,et al.  CO2 Capture from Flue gas using Amino acid salt solutions , 2009 .

[60]  Faruk Civan,et al.  Use Exponential Functions to Correlate Temperature Dependence , 2008 .

[61]  D. Silva,et al.  Computational Chemistry Study of Solvents for Carbon Dioxide Absorption , 2005 .

[62]  N. ten Asbroek,et al.  New solvents based on amino-acid salts for CO2 capture from flue gases , 2005 .

[63]  G. Versteeg,et al.  Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine , 2003 .

[64]  J. W. Belton The effect of amino-acids on the surface tensions of sodium chloride solutions , 1937 .