Decentralized measurement feedback stabilization of large-scale systems via control vector Lyapunov functions

Abstract This paper studies the problem of decentralized measurement feedback stabilization of nonlinear interconnected systems. As a natural extension of the recent development on control vector Lyapunov functions, the notion of output control vector Lyapunov function (OCVLF) is introduced for investigating decentralized measurement feedback stabilization problems. Sufficient conditions on (local) stabilizability are discussed which are based on the proposed notion of OCVLF. It is shown that a decentralized controller for a nonlinear interconnected system can be constructed using these conditions under an additional vector dissipation-like condition. To illustrate the proposed method, two examples are given.

[1]  Eduardo Sontag A Lyapunov-Like Characterization of Asymptotic Controllability , 1983, SIAM Journal on Control and Optimization.

[2]  A correction note on "Output feedback stabilization" , 1994, IEEE Trans. Autom. Control..

[3]  R. Bellman Vector Lyanpunov Functions , 1962 .

[4]  Jan Lunze,et al.  Feedback control of large-scale systems , 1992 .

[5]  Valery A. Ugrinovskii,et al.  Distributed robust filtering with Hinfinity consensus of estimates , 2011, Autom..

[6]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[7]  Fabian R. Wirth,et al.  An ISS small gain theorem for general networks , 2007, Math. Control. Signals Syst..

[8]  A. Martyniuk,et al.  Theory of stability of motion , 1977 .

[9]  勉 斎藤,et al.  D. Vandenberg : Being and Education, An Essay in Existential Phenomenology.(Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1971) , 1974 .

[10]  J. Tsinias,et al.  Output feedback stabilization , 1990 .

[11]  W. Haddad,et al.  Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach , 2008 .

[12]  Iasson Karafyllis,et al.  Stability and Stabilization of Nonlinear Systems , 2011 .

[13]  O. A. Kondrat'yev,et al.  Ultra-precision attitude control of a large low-orbital space telescope , 1999 .

[14]  Dragoslav D. Šiljak,et al.  Decentralized control of complex systems , 2012 .

[15]  Eduardo Sontag A universal construction of Artstein's theorem on nonlinear stabilization , 1989 .

[16]  Randy A. Freeman,et al.  Robust Nonlinear Control Design , 1996 .

[17]  V A Ugrinovskii,et al.  Distributed robust filtering with H∞ consensus of estimates , 2010, Proceedings of the 2010 American Control Conference.

[18]  R. Freeman,et al.  Robust Nonlinear Control Design: State-Space and Lyapunov Techniques , 1996 .

[19]  M. Vidyasagar,et al.  Qualitative Analysis of Large Scale Dynamical Systems , 2012, IEEE Transactions on Systems, Man, and Cybernetics.

[20]  V. Matrosov On the theory of stability of motion , 1962 .

[21]  Iasson Karafyllis,et al.  A Vector Lyapunov Function Characterization of Input-to-State Stability with Application to Robust Global Stabilization of the Chemostat , 2008, Eur. J. Control.

[22]  V. Lakshmikantham,et al.  Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems , 1991 .

[23]  Björn Rüffer,et al.  Connection between cooperative positive systems and integral input-to-state stability of large-scale systems , 2010, Autom..

[24]  Guanrong Chen,et al.  Global Robust Stability and Synchronization of Networks With Lorenz-Type Nodes , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.

[25]  S.G. Nersesov,et al.  Vector dissipativity theory for large-scale nonlinear dynamical systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[26]  J. Tsinias Optimal controllers and output feedback stabilization , 1990 .

[27]  C. Berge Topological Spaces: including a treatment of multi-valued functions , 2010 .

[28]  Renhou Li Decentralized control of complex systems : D. D. Siljak , 1993, Autom..

[29]  Wassim M. Haddad,et al.  On the stability and control of nonlinear dynamical systems via vector Lyapunov functions , 2006, IEEE Transactions on Automatic Control.

[30]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[31]  V. Matrosov On the stability of motion , 1962 .

[32]  A. Isidori Nonlinear Control Systems , 1985 .

[33]  Jie Huang,et al.  Robust Adaptive Control of a Class of Nonlinear Systems and Its Applications , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[34]  J. Neuberger Qualitative analysis of large scale dynamical systems , 2007 .

[35]  Valery Ugrinovskii,et al.  Distributed H ∞ consensus-based estimation of uncertain systems via dissipativity theory , 2011 .

[36]  Alberto Isidori,et al.  Nonlinear Control Systems II , 1999 .

[37]  Dabo Xu,et al.  Vector Lyapunov function approach to measurement feedback stabilization of large-scale nonlinear systems , 2011, 2011 Australian Control Conference.

[38]  Z. Artstein Stabilization with relaxed controls , 1983 .

[39]  D. L. Elliott,et al.  Nonlinear Control Systems II, Alberto Isidori, Springer, London, 1999 , 2003 .