Multiple bacteria encode metallothioneins and SmtA‐like zinc fingers

Zinc is essential but toxic in excess. Bacterial metallothionein, SmtA from Synechococcus PCC 7942, sequesters and detoxifies four zinc ions per molecule and contains a zinc finger structurally similar to eukaryotic GATA. The dearth of other reported bacterial metallothioneins has been surprising. Here we describe related bacterial metallothioneins (BmtA) from Anabaena PCC 7120, Pseudomonas aeruginosa and Pseudomonas putida that bind multiple zinc ions with high stability towards protons. Thiol modification demonstrates that cysteine coordinates zinc in all of these proteins. Additionally, 111Cd‐NMR, and 111Cd‐edited 1H‐NMR, identified histidine ligands in Anabaena PCC 7120 BmtA, analogous to SmtA. A related Escherichia coli protein bound only a single zinc ion, via four cysteine residues, with low stability towards protons; 111Cd‐NMR and 111Cd‐edited 1H‐NMR confirmed exclusive cysteine‐coordination, and these cysteine residues reacted rapidly with 5,5′‐dithiobis‐(2‐nitrobenzoic acid). 1H‐NMR of proteins from P. aeruginosa, Anabaena PCC 7120 and E. coli generated fingerprints diagnostic for the GATA‐like zinc finger fold of SmtA. These studies reveal first the existence of multiple bacterial metallothioneins, and second proteins with SmtA‐like lone zinc fingers, devoid of a cluster, and designated GatA. We have identified 12 smtA‐like genes in sequence databases including four of the gatA type.

[1]  S. Whitehall,et al.  Surplus Zinc Is Handled by Zym1 Metallothionein and Zhf Endoplasmic Reticulum Transporter in Schizosaccharomyces pombe * , 2002, The Journal of Biological Chemistry.

[2]  D. Auld Zinc coordination sphere in biochemical zinc sites , 2001, Biometals.

[3]  P. Sadler,et al.  A metallothionein containing a zinc finger within a four-metal cluster protects a bacterium from zinc toxicity , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  A. Vėlyvis,et al.  Solution Structure of the Focal Adhesion Adaptor PINCH LIM1 Domain and Characterization of Its Interaction with the Integrin-linked Kinase Ankyrin Repeat Domain* , 2001, The Journal of Biological Chemistry.

[5]  D. Winge,et al.  The mitochondrial copper metallochaperone Cox17 exists as an oligomeric, polycopper complex. , 2001, Biochemistry.

[6]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[7]  T. Kumasaka,et al.  Crystal structure of a repair enzyme of oxidatively damaged DNA, MutM (Fpg), from an extreme thermophile, Thermus thermophilus HB8 , 2000, The EMBO journal.

[8]  P E Wright,et al.  Solution structure of the cysteine-rich domain of the Escherichia coli chaperone protein DnaJ. , 2000, Journal of molecular biology.

[9]  M Vasák,et al.  Metallothioneins: new functional and structural insights. , 2000, Current opinion in chemical biology.

[10]  G. Mclendon,et al.  Zinc-dependent protein folding. , 2000, Current opinion in chemical biology.

[11]  W. Maret,et al.  Zinc transfer potentials of the α- and β-clusters of metallothionein are affected by domain interactions in the whole molecule , 2000 .

[12]  Jin Kuk Yang,et al.  Crystal structure of NAD+‐dependent DNA ligase: modular architecture and functional implications , 2000, The EMBO journal.

[13]  M. Syvanen,et al.  The origin of prokaryotic C2H2 zinc finger regulators. , 2000, Trends in microbiology.

[14]  C. Shaw,et al.  Reactions of Electrophilic Reagents That Target the Thiolate Groups of Metallothionein Clusters: Preferential Reaction of the α-Domain with 5,5‘-Dithio-bis(2-nitrobenzoate) (DTNB) and Aurothiomalate (AuSTm) , 1999 .

[15]  H. A. Louis,et al.  Solution structure of the chicken cysteine-rich protein, CRP1, a double-LIM protein implicated in muscle differentiation. , 1999, Biochemistry.

[16]  P. Sadler,et al.  Coordination of Zn2+ (and Cd2+) by Prokaryotic Metallothionein , 1998, The Journal of Biological Chemistry.

[17]  J. Lakey,et al.  A Carboxyl-terminal Cys2/His2-type Zinc-finger Motif in DNA Primase Influences DNA Content inSynechococcus PCC 7942* , 1998, The Journal of Biological Chemistry.

[18]  R. Palmiter The elusive function of metallothioneins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[19]  C. Kado,et al.  Agrobacterium transcriptional regulator Ros is a prokaryotic zinc finger protein that regulates the plant oncogene ipt. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J. Egan,et al.  Metal‐ and DNA‐binding properties and mutational analysis of the transcription activating factor, B, of coliphage 186: A prokaryotic C4 zinc‐finger protein , 1997, Protein science : a publication of the Protein Society.

[21]  Eric Oldfield,et al.  1H, 13C and 15N chemical shift referencing in biomolecular NMR , 1995, Journal of biomolecular NMR.

[22]  S. Ehrlich,et al.  Repair of oxidative DNA damage in gram-positive bacteria: the Lactococcus lactis Fpg protein. , 1995, Microbiology.

[23]  R. Palmiter,et al.  Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. , 1994, Biochemistry.

[24]  J. Keeler,et al.  Minimizing Sensitivity Losses in Gradient-Selected 15N-1H HSQC Spectra of Proteins , 1994 .

[25]  R. Palmiter,et al.  Targeted disruption of metallothionein I and II genes increases sensitivity to cadmium. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[26]  A M Gronenborn,et al.  NMR structure of a specific DNA complex of Zn-containing DNA binding domain of GATA-1. , 1993, Science.

[27]  B. Whitton,et al.  Construction of Zn2+/Cd2+ hypersensitive cyanobacterial mutants lacking a functional metallothionein locus. , 1993, The Journal of biological chemistry.

[28]  N. Robinson,et al.  Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions , 1993, Molecular microbiology.

[29]  M. Ikeuchi,et al.  Nucleotide sequence of a metallothionein gene of the thermophilic cyanobacterium Synechococcus vulcanus , 1992, Plant Molecular Biology.

[30]  N. Robinson,et al.  Cyanobacterial metallothionein gene expressed inEscherichia coli Metal‐binding properties of the expressed protein , 1992, FEBS letters.

[31]  B. Luisi Zinc standard for economy , 1992, Nature.

[32]  F. Richards,et al.  The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. , 1992, Biochemistry.

[33]  P F Little,et al.  High-resolution localization of 69 potential human zinc finger protein genes: a number are clustered. , 1992, Genomics.

[34]  B. Whitton,et al.  Prokaryotic metallothionein gene characterization and expression: chromosome crawling by ligation-mediated PCR , 1990, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[35]  C. E. Hildebrand,et al.  Human metallothionein genes: structure of the functional locus at 16q13. , 1990, Genomics.

[36]  C. Kay,et al.  Primary- and secondary-structural analysis of a unique prokaryotic metallothionein from a Synechococcus sp. cyanobacterium. , 1988, The Biochemical journal.

[37]  R. R. Ernst,et al.  Polypeptide - Metal Cluster Connectivities in Metallothionein 2 by Novel1H -113Cd Heteronuclear Two-Dimensional NMR Experiments , 1986 .

[38]  R. R. Ernst,et al.  Polypeptide-metal cluster connectivities in metallothionein 2 by novel proton-cadmium-113 heteronuclear two-dimensional NMR experiments , 1985 .

[39]  H. K. Schachman,et al.  Mercurial-promoted Zn2+ release from Escherichia coli aspartate transcarbamoylase. , 1984, The Journal of biological chemistry.

[40]  P. Sadler,et al.  Cadmium-Resistant Pseudomonas putida Synthesizes Novel Cadmium Proteins , 1984, Science.

[41]  Amos Bairoch,et al.  The PROSITE database, its status in 2002 , 2002, Nucleic Acids Res..

[42]  C. Pabo,et al.  DNA recognition by Cys2His2 zinc finger proteins. , 2000, Annual review of biophysics and biomolecular structure.

[43]  Scot A. Wolfe,et al.  DNA RECOGNITION BY Cys 2 His 2 ZINC FINGER PROTEINS , 2000 .

[44]  W. Maret,et al.  Zinc transfer potentials of the alpha - and beta-clusters of metallothionein are affected by domain interactions in the whole molecule. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Amos Bairoch,et al.  The PROSITE database, its status in 1999 , 1999, Nucleic Acids Res..

[46]  D. Pountney,et al.  NMR spectroscopic studies of I = 1/2 metal ions in biological systems. , 1998, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[47]  G. Öz,et al.  NMR spectroscopic studies of I = 1/2 metal ions in biological systems , 1998 .

[48]  O. Zerbe,et al.  Vicinal 113Cd,1H.beta.-cysteine coupling in cadmium-substituted metalloproteins follows a Karplus-type dependence , 1994 .

[49]  Coleman Je Cadmium-113 nuclear magnetic resonance applied to metalloproteins. , 1993 .

[50]  J. Coleman Cadmium-113 nuclear magnetic resonance applied to metalloproteins. , 1993, Methods in enzymology.

[51]  B. Luisi DNA transcription. Zinc standard for economy. , 1992, Nature.