Axioms for the category of Hilbert spaces
暂无分享,去创建一个
[1] Samson Abramsky,et al. A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..
[2] C. Heunen,et al. Limits in dagger categories , 2018, 1803.06651.
[3] A. Kapustin. Is quantum mechanics exact , 2013 .
[4] M. P. Soler,et al. Characterization of hilbert spaces by orthomodular spaces , 1995 .
[5] Dov M. Gabbay,et al. Handbook of Quantum logic and Quantum Structures , 2007 .
[6] Robert W. Spekkens,et al. Foundations of Quantum Mechanics , 2007 .
[7] Huzihiro Araki,et al. A remark on Piron's paper , 1966 .
[8] J. Baez. Division Algebras and Quantum Theory , 2011, 1101.5690.
[9] L. Hardy. Quantum Theory From Five Reasonable Axioms , 2001, quant-ph/0101012.
[10] C. Heunen,et al. Categories for Quantum Theory , 2019 .
[11] D. A. Edwards. The mathematical foundations of quantum mechanics , 1979, Synthese.
[12] A. Grinbaum. Reconstruction of Quantum Theory , 2007, The British Journal for the Philosophy of Science.
[13] Saunders MacLane,et al. Duality for groups , 1950 .
[14] C. Piron,et al. On the Foundations of Quantum Physics , 1976 .
[15] E. Hellinger,et al. Grundlagen für eine Theorie der unendlichen Matrizen , 1910 .
[16] S. Holland,et al. Orthomodularity in infinite dimensions; a theorem of M. Solèr , 1995 .
[17] F W Lawvere,et al. AN ELEMENTARY THEORY OF THE CATEGORY OF SETS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.
[18] H. Groß. Hilbert lattices: New results and unsolved problems , 1990 .
[19] J. V. Michalowicz,et al. CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES , 2018 .
[20] Chris Heunen,et al. An embedding theorem for Hilbert categories , 2008, 0811.1448.
[21] W. John Wilbur,et al. On characterizing the standard quantum logics , 1977 .
[22] Bart Jacobs,et al. Quantum Logic in Dagger Kernel Categories , 2009, QPL@MFPS.
[23] Peter Selinger,et al. Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.
[24] Dominic R. Verity,et al. ∞-Categories for the Working Mathematician , 2018 .
[25] P. Porcelli,et al. On rings of operators , 1967 .
[26] M. Karvonen. Biproducts without pointedness , 2018, 1801.06488.